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Abstract

During the great recession starting in 2008, governments were often encour-
aged to apply pressure onto banks to make them extend more credit. The
reasoning was that greater access to credit would allow households and busi-
nesses to consume and invest, thus allowing the economy to recover quicker.
In this thesis, a game theoretical model of households is embedded within a
DSGE model to investigate this mechanism of government pressure on banks.

We assume differentiated households, each distinguished from the other
by their job- and credit aversion. Households participate in a job market
game and after this participate in a credit market game. A family is formed
after the results of the games are revealed, and the family distributes con-
sumption among employed and unemployed. The family consists of two
segments, based on household outcomes. One section is rule of thumb, the
other is optimising.

The family sets employment levels and consumption levels according to
incentive compatibility to optimise its utility function. The family owns the
producers in the economy, which are subject to Calvo price frictions. There
is no government expenditure in the model.

The model proves difficult to solve explicitly, but preliminary analysis
indicates several mechanisms by which government pressure on banks can
affect aggregate output. Additionally, several complicated interaction pat-
terns arise between the rule of thumb segment and the optimising segment
not seen in other models. Finally, the family’s optimisation problem turns
out to exhibit state dependency, despite no capital being assumed in the
model.
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Chapter 1

Introduction

One of the persistent stories in the news during the Great Recession after
the Financial Crisis was small businesses and households unable to obtain
credit. Owners of businesses complained that banks were calling in loans, and
refusing credit for new expansion, households were unable to obtain mort-
gages. Government intervention was often suggested as a possible remedy,
either through the large government ownership stakes in banks, or through
regulation, to make banks extend credit to a greater extent. In this thesis, a
model will be constructed to examine the linkages between credit availabil-
ity, unemployment, and economic activity, and answer the primary question
whether government intervention to increase credit availability can help an
economy recover from a downturn.

The theoretical basis for this model is to be found primarily in two dif-
ferent papers. From [Gaĺı et al., 2007] we use the concept of rule of thumb
households, who are unable to obtain credit and thus must consume their
total income every period. Meanwhile, from [Christiano et al., 2010], we
expand on a game-theoretical model of involuntary unemployment, where
households must invest effort into obtaining a job, and unemployed house-
holds receive support from the employed households in a family construct.

The structure of the thesis is as follows:
In chapter 2, a model of household behaviour is developed. Each house-

hold is different from the next, differentiated in two parameters. Households
individually seek to maximise expected utility, and six distinct strategies
emerge based on this principle.

In chapter 3, the family is introduced, which anticipates and predicts
household behaviour. The family enforces redistribution from employed to
unemployed, but acts in the aggregate best interests of households.

In chapter 4, a reduced model is developed, where, by removing the pos-
sibility of obtaining credit when unemployed, restrict the available strategies

1



2 CHAPTER 1. INTRODUCTION

from six to four. This simplifies the model significantly, and brings with it a
dimensional reduction of a matrix that would otherwise have been even more
problematic than it turns out to be.

In chapter 5, we flesh out the production sector of the DSGE model by
proposing the simplest possible setup: A continuum of local monopolists
produce intermediate goods and are subject to Calvo price frictions. The
standard structure of this half of the model allows us to keep our focus on
the family through the rest of the model.

In chapter 6, we consider the equilibrium of the DSGE model, and by
combining clearing in the various markets with the optimality conditions, we
get a DSGE system that seems to reduce to two real variables: inflation and
size of the optimising family. Unfortunately, several surprises pop up along
the way, preventing us from obtaining a closed form solution to the model.

In chapter 7, we consider the behaviour of consumption and employment
at natural levels and in steady state, and in chapter 8 we propose an initial
calibration of the model.

Finally in chapter 9, we use the model to examine the impact of a change
in government pressure on banks. We find preliminary evidence in support
of the hypothesis that government pressure on banks may be warranted, and
summarise, conclude and comment on limitations in chapter 10.

Additionally, four appendices are included, documenting the calculations
and programming done with regards to bridging the gap between the game
theoretical model, and the macroeconomic model.



Chapter 2

A Model of the Households

2.1 Introduction

The primary focus of this DSGE model is on the interaction between parti-
cipation in the job market and the credit market among households. This
chapter develops a two-stage game where households participate first in the
job market game, and then in the credit market game. After these games
have been played out, a family is formed consisting of all households. The
households can only interact with the rest of the model through the family.

The game developed below is an extension of the game developed in
[Christiano et al., 2010], where a unit length of households participate in the
job market game, and are possibly subject to involuntary unemployment.
Our model keeps the possibility of involuntary unemployment, and addition-
ally adds involuntary exclusion from the credit market.

2.2 A model of the households

Assume a continuum of households. Each period, a household draws two
independent efficiency parameters φ, ψ from the uniform distribution over
[0, 1]. Consequently we may think of the households as populating the unit
square. The parameters are respectively aversion to work and cost of credit
maintenance. If the household is employed, it thus must sustain a disutility
of F j + ςj(1 + σj)φ

σj . In addition, if a household has obtained credit, it
must sustain a disutility of F k + ςk(1 +σk)ψ

σk . We assume Fj, Fk ∈ R+, and
σj, σk, ςj, ςk ∈ R+.

Each household, after drawing its privately observed efficiency paramet-
ers, must decide whether to participate in the job market or not. Thus the
household chooses an effort level ejt ∈ [0,∞[. The higher the effort level, the

3



4 CHAPTER 2. A MODEL OF THE HOUSEHOLDS

higher the probability of finding a job:1

p(ejt) = η + aee
j
t .

Effort is costly, meaning the household incurs a quadratic disutility of effort
given by 1

2
(ejt)

2.
After the results of the job market game are revealed (each household

achieves jt ∈ {0, 1}), households must decide whether to participate in the
credit market or not. Again, households choose an effort level ekt ∈ [0,∞[,
which influences the probability q of obtaining credit.

The probability q depends upon employment status (banks will be more
willing to extend credit to employed households), the effort parameter chosen,
a policy parameter (to model government pressure upon banks to lend more),
and the output gap (which functions as a crude proxy of banks’ fear of
bankruptcy among clients). Thus we have:2

q(jt, e
k
t ) = bjjt + bggt(jt) + bee

k
t − bxxt−1.

Finally, a single family is formed consisting of all households irrespective
of outcome. As [Christiano et al., 2010] notes: ”We view the family as a
stand-in for various market and non-market arrangements that actual house-
holds have for dealing with idiosyncratic labor market outcomes.” The family
cannot observe the effort choices made by households, only the outcomes ob-
tained.

Based on outcome, the family must redistribute between employed and
unemployed households by setting post-redistribution consumption levels en-
joyed by the households as

ct(jt, kt).

We assume though that redistribution can not happen from optimising (kt =
1) to rule of thumb households (kt = 0) and vice versa, this ensures that rule
of thumb households truly remain rule of thumb, and cannot simply access
the credit market by proxy through the optimising segment of the family.

2.3 Private outcomes for the households

Based on the model developed above, we can list out the possible final out-
comes for a household described by its two efficiency parameters φ and ψ.

1We note already that calibration of the model must ensure no household obtains
p(ejt ) > 1.

2We likewise need to ensure that our chosen calibration leaves this probability between
zero and one.
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Listing out the outcomes allows us in the next sections to partition house-
holds according to their chosen strategies.

2.3.1 The rule of thumb outcomes

Common among rule of thumb households is that they will not be able to
borrow or save. Several possible outcomes are present within the class of rule
of thumb households, each with possibly different ex-post utility:

2. Succeeded in j game. Participated in k game, failed.

Utility: U2 = log (ct(1, 0))− F j − ςj(1 + σj)φ
σj − 1

2
(ejt)

2 − 1
2
(ekt )

2

3. Succeeded in j game. Did not participate in k game.

Utility: U3 = log (ct(1, 0))− F j − ςj(1 + σj)φ
σj − 1

2
(ejt)

2

5. Participated in j game, failed. Participated in k game, failed.

Utility: U5 = log (ct(0, 0))− 1
2
(ejt)

2 − 1
2
(ekt )

2

6. Participated in j game, failed. Did not participate in k game.

Utility: U6 = log (ct(0, 0))− 1
2
(ejt)

2

8. Did not participate in j game. Participated in k game, failed.

Utility: U8 = log (ct(0, 0))− 1
2
(ekt )

2

9. Did not participate in either game.

Utility: U9 = log (ct(0, 0))

Of these, only the first two types are employed, and the family will make
these types support the other types. Note that we have ignored possible
mixed strategies for the households.

2.3.2 The optimising outcomes

Only three different outcomes allow the household to be optimising:

1. Succeeded in j game. Succeeded in k game.

Utility: U1 = log (ct(1, 1))− F j − ςj(1 + σj)φ
σj − F k − ςk(1 + σk)ψ

σk −
1
2
(ejt)

2 − 1
2
(ekt )

2

4. Participated in j game, failed. Succeeded in k game.

Utility: U4 = log (ct(0, 1))− F k − ςk(1 + σk)ψ
σk − 1

2
(ejt)

2 − 1
2
(ekt )

2
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7. Did not participate in j game. Succeeded in k game.

Utility: U7 = log (ct(0, 1))− F k − ςk(1 + σk)ψ
σk − 1

2
(ekt )

2

Among these types, the first two are employed, and the family will make
these types support the third type.

2.4 The household’s maximisation problem

In line with standard assumptions, households will maximise their expec-
ted utility. To solve this maximisation problem, we proceed by backwards
induction. Thus we begin with the credit market game.

2.4.1 The credit market game

Solving the maximisation problem

A household which has obtained a job (jt = 1) and chooses to participate in
the credit market game to obtain credit (kt = 1) solves the following problem
of maximising expected utility:

max
ekt

[
q(1, ekt )U1 + (1− q(1, ekt ))U2

]
= max

ekt

[
q(1, ekt )(U1 − U2) + U2

]
= max

ekt

[
q(1, ekt )

(
log

(
ct(1, 1)

ct(1, 0)

)
− F k − ςk(1 + σk)ψ

σk

)
− 1

2
(ekt )

2

]
,

where we have removed irrelevant constants along the way, since these are
independent of effort.

Thus we obtain an optimal effort level for employed households:

ek,1t = max

[
be

(
log

(
ct(1, 1)

ct(1, 0)

)
− F k − ςk(1 + σk)ψ

σk

)
, 0

]
= max

[
beςk(1 + σk)

(
(mk,1

t )σk − ψσk
)
, 0
]
.

Where mk,1
t will be explained in the next subsection.

Similarly for unemployed households and households outside the labour
force, we will obtain:

ek,0t = max

[
be

(
log

(
ct(0, 1)

ct(0, 0)

)
− F k − ςk(1 + σk)ψ

σk

)
, 0

]
= max

[
beςk(1 + σk)

(
(mk,0

t )σk − ψσk
)
, 0
]
.
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Where mk,0
t is also explained in the next subsection.

Note that expected utility from participation, and thus optimal effort
levels in the game are dependent on φ, but independent of ψ.

The marginal households in the credit market game

Certain households will choose not to participate in the credit market game
if the expected return from participation is not high enough. By the prin-
ciple of expected utility maximisation, households with an increase in ex-ante
utility from participation will participate. The rest will stay outside. Due
to this, there exists two marginal households with ψ = mk,jt

t respectively
characterised by equality of expected utilities from participating or not:

0 =q
(

1, ek,1t

)
U1 +

(
1− q

(
1, ek,1t

))
U2 − U3

=q
(

1, ek,1t

)
(U1 − U2) + (U2 − U3)

=q
(

1, ek,1t

)(
log

(
ct(1, 1)

ct(1, 0)

)
− F k − ςk(1 + σk)(m

k,1
t )σk

)
− 1

2
(ek,1t )2

= (bj + bggt(1)− bxxt−1)
(

log

(
ct(1, 1)

ct(1, 0)

)
− F k − ςk(1 + σk)(m

k,1
t )σk

)
+

1

2

(
max

[
be

(
log

(
ct(1, 1)

ct(1, 0)

)
− F k − ςk(1 + σk)(m

k,1
t )σk

)
, 0

])2

To solve the equation above, we note that (bj + bggt(1)− bxxt−1) is non-
zero in general, and since the second term is non-negative, we are left with
the conclusion that the marginal household can be described by:

log

(
ct(1, 1)

ct(1, 0)

)
= F k + ςk(1 + σk)(m

k,1
t )σk .

Likewise we obtain, from repeating the calculations for households that are
not employed:

log

(
ct(0, 1)

ct(0, 0)

)
= F k + ςk(1 + σk)(m

k,0
t )σk .

Ex-ante utilities

It will be useful later to consider the ex-ante utilities of households as they
make their choices in the credit market game.
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Employed households with credit aversion ψ ≤ mk,1
t will thus have the

following ex-ante utility:

UA1 =q
(

1, ek,1t

)
U1 +

(
1− q

(
1, ek,1t

))
U2

=q
(

1, ek,1t

)
(U1 − U2) + U2

=q(1, ek,1t )

(
log

(
ct(1, 1)

ct(1, 0)

)
− F k − ςk(1 + σk)ψ

σk

)
+ log ct(1, 0)− F j − ςj(1 + σj)φ

σj − 1

2
(ek,1t )2 − 1

2
(ejt)

2

=k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ log ct(1, 0)− F j − ςj(1 + σj)φ

σj − 1

2
(ejt)

2

where we have introduced the notation k1 = (bj + bggt(1)− bxxt−1) along
with fk(m,ψ) = ςk(1 + σk) (mσk − ψσk), which will be used extensively.

Similarly, unemployed households with credit aversion ψ ≤ mk,0
t will have,

with k0 = (bggt(0)− bxxt−1):

UA0 =q
(

0, ek,0t

)
U4 +

(
1− q

(
1, ek,1t

))
U5

=k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,0
t , ψ

)
+ log ct(0, 0)− 1

2
(ejt)

2

Households outside the labour force that choose to participate in the
credit market game (since they drew ψ ≤ mk,0

t ) have a very similar ex-ante
utility given by:

UAn =q
(

0, ek,0t

)
U7 +

(
1− q

(
1, ek,1t

))
U8

=k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,0
t , ψ

)
+ log ct(0, 0) (2.1)

Households that choose not to participate in the credit market game
follow easily from the above.

Note that k1 and k0 are of interest to us later, since part of the motivation
of constructing this model is to examine the effects of government pressure
on banks to increase credit availability.
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2.4.2 The job market game

Thus having characterised behaviours in the credit market game, we turn
now to the job market game.

Households with high credit aversion

Let us assume that mk,0
t < mk,1

t , meaning that a greater proportion of em-
ployed households than unemployed households will enter the credit market
game.3 Households with high credit aversion, characterised by ψ > mk,1

t , will
not participate in the credit game irrespective of outcome in the job market
game, and thus if they choose to participate in the job market game they
seek to maximise:

E(U) =p(ejt)U3 + (1− p(ejt))U6

=p(ejt)
(
log (ct(1, 0))− F j − ςj(1 + σj)φ

σj
)

+
(
1− p(ejt)

)
log (ct(0, 0))− 1

2
(ejt)

2

=(η + aee
j
t)

(
log

(
ct(1, 0)

ct(0, 0)

)
− F j − ςj(1 + σj)φ

σj

)
+ log (ct(0, 0))− 1

2
(ejt)

2

This is maximised at (where we define mj,h
t later):

ej,ht = max

{
ae

(
log

(
ct(1, 0)

ct(0, 0)

)
− F j − ςj(1 + σj)φ

σj

)
, 0

}
= max

{
aeςj(1 + σj)

(
(mj,h

t )σj − φσj
)
, 0
}
.

Using the first expression, we get an optimal expected utility of

E(U) =η

(
log

(
ct(1, 0)

ct(0, 0)

)
− F j − ςj(1 + σj)φ

σj

)
+

1

2
a2e

(
log

(
ct(1, 0)

ct(0, 0)

)
− F j − ςj(1 + σj)φ

σj

)2

+ log (ct(0, 0))

Households that do not participate in the job market game simply obtain
U9 = log(ct(0, 0)), and this is thus their certain (expected) utility. Thus, the
marginal household with φ = mj,h

t will be characterised by:

3This assumption seems reasonable, since the uncertainty of being unemployed will
discourage households from taking on debt.
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log

(
ct(1, 0)

ct(0, 0)

)
= F j + ςj(1 + σj)

(
mj,h
t

)σj
.

Using this, we can rewrite the optimal expected utility of households with
high credit aversion that choose to participate in the job market as:

UH =ηfj

(
mj,h
t , φ

)
+

1

2
a2ef

2
j

(
mj,h
t , φ

)
+ log (ct(0, 0)) (2.2)

with fj(m,φ) = ςj(1 + σj) (mσj − φσj).

Households with medium credit aversion

Households with mk,0
t < ψ ≤ mk,1

t will choose to enter the credit market
game if employed, but will stay out if unemployed. Thus, if they choose to
enter the job market game, they will maximise:

E(U) =p(ejt) (UA1) +
(
1− p(ejt)

)
U6

=p(ejt) (UA1 − U6) + U6

=p(ejt)

[
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)]
+ p(ejt)

[
log

(
ct(1, 0)

ct(0, 0)

)
− F j − ςj(1 + σj)φ

σj

]
+ log (ct(0, 0))− 1

2
(ejt)

2

=p(ejt)

[
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ fj

(
mj,h
t , φ

)]
+ log (ct(0, 0))− 1

2
(ejt)

2

Which is maximised at

ej,mt = max

{
ae

[
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ fj

(
mj,h
t , φ

)]
, 0

}
= max

{
ae

[
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)]
+ ej,ht , 0

}
.

Note the nice relationship between effort levels obtained here: two households
with identical aversion to work (ψ) will, dependent on the benefit they ac-
crue later from their credit aversion parameters, choose different effort levels.
Additionally, we see that as we decrease φ, we maintain piecewise continuity
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of optimal effort levels, even as we transition from high credit aversion to
low.

Households with medium credit aversion that choose to enter the job
market game thus obtain an optimal expected utility of the form:

η

[
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ fj

(
mj,h
t , φ

)]
+

1

2
a2e

[
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ fj

(
mj,h
t , φ

)]2
+ log (ct(0, 0))

In this case, as above, the marginal household will be characterised by
equality of the above utility with the utility from not participating in the job
market game, which is simply U9 = log (ct(0, 0)). An equivalent condition
for this is thus:

k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ fj

(
mj,h
t ,mj,m

t

)
= 0

Which leads us to the following relation:

ςj(1 + σj)(m
j,m
t )σj = ςj(1 + σj)(m

j,h
t )σj + k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
Note that this expression for the marginal household in the job market is also
piecewise continuous, that is for ψ = mk,1

t , then mj,m
t = mj,h

t . Note also the
inverse relationship between ψ and mj,m

t , as hinted at previously regarding
the optimal effort levels. This is exactly as we might expect: A bigger
upside from participation (the chance to become optimising) will motivate
more people to join the job market: households with high φ that might not
otherwise join the job market may do so if they have sufficiently low ψ that
the benefits from access to the credit market vastly outweigh the costs.

We use the above definition of mj,m
t (by subtracting ςj(1 + σj)ψ

σj from
both sides) to rewrite the optimal expected utility for households with me-
dium credit aversion participating in the job market game as:

UM =ηfj
(
mj,m
t , φ

)
+

1

2
a2ef

2
j

(
mj,m
t , φ

)
+ log (ct(0, 0)) (2.3)

Households with low credit aversion

Finally, households with ψ ≤ mk,0
t , will join the credit market irrespective of

outcome in the job market. Thus, if they participate in the job market game
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they will maximise their expected utility, given by:

p(ejt)UA1 +
(
1− p(ejt)

)
UA0

=p(ejt)(UA1 − UA0) + UA0

=p(ejt)

[
k1fk

(
mk,1
t , ψ

)
− k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)]
+ p(ejt)

[
log

(
ct(1, 0)

ct(0, 0)

)
− F j − ςj(1 + σj)φ

σj

]
+ k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,0
t , ψ

)
+ log ct(0, 0)− 1

2
(ejt)

2

=p(ejt)

[
k1fk

(
mk,1
t , ψ

)
− k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ fj

(
mj,h
t , φ

)]
+ k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,0
t , ψ

)
+ log ct(0, 0)− 1

2
(ejt)

2

Which is maximised at

ej,lt = max

{
ae

[
k1fk

(
mk,1
t , ψ

)
− k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ fj

(
mj,h
t , φ

)]
, 0

}
This leads to an optimal expected utility of

η

[
k1fk

(
mk,1
t , ψ

)
− k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ fj

(
mj,h
t , φ

)]
+

1

2
a2e

[
k1fk

(
mk,1
t , ψ

)
− k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ fj

(
mj,h
t , φ

)]2
+ k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,0
t , ψ

)
+ log ct(0, 0)

If these households choose not to participate in the job market game their
utility will be given by UAn, calculated previously. Note that UAn is in fact
the last line of the optimal expected utility above, so an equivalent condition
for equality must thus be:

k1fk

(
mk,1
t , ψ

)
− k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ fj

(
mj,h
t ,mj,l

t

)
= 0

Which leads us to the following relation:

ςj(1 + σj)(m
j,l
t )σj =k1fk

(
mk,1
t , ψ

)
− k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ ςj(1 + σj)(m

j,h
t )σj
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Note again that for ψ = mk,0
t , then mj,m

t = mj,l
t , and if we add and subtract

1
2
b2eςk(1 + σk)ψ on the right side, we can rewrite as:

ςj(1 + σj)(m
j,l
t )σj =ςj(1 + σj)(m

j,m
t )σj − k0fk

(
mk,0
t , ψ

)
− 1

2
b2ef

2
k

(
mk,0
t , ψ

)
The expression above is also quite intuitive: Since staying out of the

job market game is more attractive for households with low credit aversion
(because they will join the credit market game anyway and possibly become
optimising), less households (compared to households with medium credit
aversion) will join the job market game.

Using this expression, we can rewrite the optimal expected utility as:

UL =ηfj

(
mj,l
t , φ

)
+

1

2
a2ef

2
j

(
mj,l
t , φ

)
+ k0fk

(
mk,0
t , ψ

)
+

1

2
b2ef

2
k

(
mk,0
t , ψ

)
+ log ct(0, 0) (2.4)

which in fact is also piecewise continuous with UM in ψ = mk,0
t .

2.5 Summary

Households populate the unit square, and split into six different types at the
outset, which determines their strategy regarding participation in the games.
The situation has been represented in Figure 2.1, and is summarised below:

Households with ψ > mk,1
t and φ > mj,h

t do not participate in either
game, and have the certain ex-ante utility of log ct(0, 0). Households with
the same high credit aversion, but φ ≤ mj,h

t participate in the job market
game with no intention of participating in the credit market game. They
obtain UH as their ex-ante utility, as defined in (2.2).

Households with medium credit aversion and φ > mj,m
t also do not par-

ticipate in either game, and have the certain ex-ante utility of log ct(0, 0).
Medium credit aversion households with φ ≤ mj,m

t participate in the job
market, and will then participate in the credit market game if they obtain a
job. Their ex-ante utility is UM , as defined in (2.3).

Households with low credit aversion, that is ψ ≤ mk,0
t always participate

in the credit market game, so of these, households with φ > mj,h
t choose not

to participate in the job market game and obtain ex-ante utility of UAn, given
in (2.1). And households with φ ≤ mj,h

t participate in the job market game
and obtain UL as their ex-ante utility, given in (2.4).
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ψ

φ

mj,h
t

mj,m
t

mj,l
t

mk,0
t mk,1

t

1

1

UL

UAn

UM

log ct(0, 0)

UH

log ct(0, 0)

O

Figure 2.1: A sketch showing the partitioning of the unit square of households
according to their strategy and resulting ex-ante utility.



Chapter 3

The Family

3.1 Introduction

In our model, all households are members of the family, and all interaction
with the rest of the economy happens through the family. One of the key
issues to address when dealing with a family is to model its behaviour con-
sistently and realistically. Several possible approaches present themselves,
ranging from outright coercion of individual households to work (which is
incompatible with our previous assumptions regarding households maxim-
ising expected utility), across contract theoretical specifications, which we
have also briefly considered, where the family proposes a set of contracts to
households with the aim of maximising a given utility function subject to
incentive compatibility for the households, all the way to the other extreme,
where we view the family as having no independent agency at all, and see it as
simply an emergent structure of the aggregate behaviour of the households.
Our model leans mostly towards the latter, although we will later explore
a naive contract theoretical model as well, which produces more tractable
behaviour at the macroeconomic level.

For the moment, let us consider the family as an emergent structure.
Thus, it seems reasonable to assume the family faces the problem of maxim-
ising aggregate intertemporal utility, subject to the standard intertemporal
budget constraint for the optimising segment, and the standard ”hand to
mouth” condition on the rule of thumb segment.

But to arrive at a utility function for the family that fully encapsulates
the complex behaviour of the households, we will first have to make a few
considerations, starting with the composition of the family. To do this, es-
pecially to obtain tractable analytic results, we will need to set σj = 1, and
eventually also σk = 1.

15
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3.2 The composition of the family

The family is formed after the results of the games have been revealed. But
by the law of large numbers, we can calculate the composition of the family
by aggregating the behaviour of the households.

The size of the employed households with credit access will be all the
households that joined and succeeded in the job market game and joined
and succeeded in the credit market game:

H1
t =

∫ mj,lt

0

∫ mk,0t

0

p
(
ej,lt

)
q
(

1, ek,1t

)
dψdφ

+

∫ mj,mt

0

∫ mk,1t

mk,0t

p
(
ej,mt

)
q
(

1, ek,1t

)
dψdφ.

This integral is quite complex, and full details of the methodology for
evaluating this integral, along with the others following, is provided in the
appendix. Explicit evaluation is only possible with the aforementioned re-
striction σj = 1.

The unemployed households and households outside the labour force with
credit access will be:

Un1
t =

∫ mj,lt

0

∫ mk,0t

0

(
1− p

(
ej,lt

))
q
(

0, ek,0t

)
dψdφ

+

∫ 1

mj,lt

∫ mk,0t

0

q
(

0, ek,0t

)
dψdφ

=

∫ 1

0

∫ mk,0t

0

q
(

0, ek,0t

)
dψdφ−

∫ mj,lt

0

∫ mk,0t

0

p
(
ej,lt

)
q
(

0, ek,0t

)
dψdφ

As above, a trapezoid approximation is necessary if we do not set σj = 1.
The employed rule-of-thumb households will be the households that joined

and succeeded in the job market, and either failed or did not join the credit
market game:

H0
t =

∫ mj,lt

0

∫ mk,0t

0

p
(
ej,lt

)(
1− q

(
1, ek,1t

))
dψdφ

+

∫ mj,mt

0

∫ mk,1t

mk,0t

p
(
ej,mt

) (
1− q

(
1, ek,1t

))
dψdφ

+

∫ mj,ht

0

∫ 1

mk,1t

p
(
ej,ht

)
dψdφ
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Or equivalently:

H0
t =

∫ mj,lt

0

∫ mk,0t

0

p
(
ej,lt

)
dψdφ

+

∫ mj,mt

0

∫ mk,1t

mk,0t

p
(
ej,mt

)
dψdφ

+

∫ mj,ht

0

∫ 1

mk,1t

p
(
ej,ht

)
dψdφ

−H1
t

While the rule of thumb household who are unemployed or outside the
labour force can be determined by the identity Un0

t = 1 −H0
t −H1

t − Un1
t ,

since we are dealing with a partition of the unit square.

As mentioned earlier, some of these integrals can be evaluated explicitly,
while the rest can be explicitly integrated with respect to φ, and will then
need numerical integration when integrating with respect to ψ. Irrespective
of the methodology used, the employment levels turn out to be functions of
the marginal levels along with the base utility level, log ct(0, 0). This will be
used later.

3.3 The family’s utility function

At this point, it is worth explaining why only a single family exists in the
model, which then cannot redistribute between rule of thumb and optimising
members. It seems reasonable, since we have imposed this partition through
the middle of the family, to spilt the family completely. But, if we instead
wished to have two families, one optimising and one rule of thumb, problems
would appear quite quickly. One might imagine situations where the families
would compete against each other to try and ”dispose” of the unemployed
to the other family. But this behaviour would likely require families to be
endowed with a separate decision making process, and would thus bring us
into some kind of hybrid contract theory, where two ”employers” compete
for households, with the complication that the optimising family cannot with
certainty allow all applicants entry. Or, alternatively, if we try to construct
an emergent behaviour for the two families, we run into issues stemming from
households not knowing which family they will end up in at the beginning
of the period.
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3.3.1 The internal constraints upon the family

Thus, to simplify things, only one family exists, and its behaviour is a simple
aggregate of household behaviours. Under this specification, we can re-
interpret the marginal identities obtained before as incentive compatibility
constraints upon the consumption levels. We can safely ignore mj,m

t and
mj,h
t , since their values follow from the values of the three more fundamental

marginal relations, which we repeat below:

log

(
ct(1, 1)

ct(1, 0)

)
= F k + ςk(1 + σk)

(
mk,1
t

)σk
(3.1)

log

(
ct(0, 1)

ct(0, 0)

)
= F k + ςk(1 + σk)

(
mk,0
t

)σk
(3.2)

log

(
ct(1, 0)

ct(0, 0)

)
= F j + ςj(1 + σj)

(
mj,h
t

)σj
(3.3)

Additionally, there are the two internal resource constraints, since the
family cannot redistribute between optimising and rule of thumb households:

H1
t

H1
t + Un1

t

ct(1, 1) +
Un1

t

H1
t + Un1

t

ct(0, 1) = C1
t (3.4)

H0
t

H0
t + Un0

t

ct(1, 0) +
Un0

t

H0
t + Un0

t

ct(0, 0) = C0
t (3.5)

These expressions can be combined in various ways, note for example that
we can chain together (3.1) and (3.3) to obtain:

ct(1, 1) = exp

(
F k + ςk(1 + σk)

(
mk,1
t

)σk
+ F j + ςj(1 + σj)

(
mj,h
t

)σj
+ log(ct(0, 0))

)
This can then be inserted into (3.4) along with (3.2) to express C1

t as a
function of four internal variables, namely mk,1

t ,mk,0
t ,mj,h

t and log(ct(0, 0)).
Recall that part of the family is assumed to be rule of thumb. This means

that this family cannot choose arbitrary combinations of H0
t , Un

0
t and C0

t .
For given W 0

t and Pt the family must choose such that W 0
t H

0
t = C0

t Pt. It
proves useful to consider the rule of thumb family as choosing H0

t only, and
viewing Un0

t and C0
t being determined from the variables H1

t , Un
1
t and C1

t .
Thus for a given level of the internal marginals, we can find the corres-

ponding level of the external values, H1
t , Un

1
t , H

0
t and C1

t . These then in turn
determine the remaining C0

t and Un0
t .
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3.3.2 The utility function as an aggregate

As mentioned earlier, we do not consider the family to be endowed with any
separate motivations or goals. Thus to obtain the utility function for the
family, we simply integrate the ex-ante utilities of the households. Recall
that there are six different types of households at the outset.

The family’s collective utility function becomes:∫ mj,lt

0

∫ mk,0t

0

ULdψdφ+

∫ 1

mj,lt

∫ mk,0t

0

UAndψdφ

+

∫ mj,mt

0

∫ mk,1t

mk,0t

UMdψdφ+

∫ 1

mj,mt

∫ mk,1t

mk,0t

log ct(0, 0)dψdφ

+

∫ mj,ht

0

∫ 1

mk,1t

UHdψdφ+

∫ 1

mj,ht

∫ 1

mk,1t

log ct(0, 0)dψdφ

As before, some of these integrals are easy to evaluate, while others are
decidedly non-trivial.

As calculated in the appendix, we arrive at the following approximate
expression for the utility function as a function of four internal variables,
mk,1
t , mk,0

t , mj,h
t and log(ct(0, 0)):1

U ≈(mk,0
t )

(
ηςjσj

2

(
(mj,l

t )
1+σj
|0

)
+

1

4
a2eς

2
j

σ2
j (1 + σj)

1 + 2σj

(
(mj,l

t )
1+2σj
|0

))
−mk,0

t

(
ηςjσj

2

(
(mj,h

t )1+σj
)

+
1

4
a2eς

2
j

σ2
j (1 + σj)

1 + 2σj

(
(mj,h

t )1+2σj
))

+mk,1
t

ηςjσj
2

(
(mj,h

t )1+σj + (mj,m
t )

1+σj

|mk,0t

)
+mk,1

t

1

4
a2eς

2
j

σ2
j (1 + σj)

1 + 2σj

(
(mj,h

t )1+2σj + (mj,m
t )

1+2σj

|mk,0t

)
+ k0ςkσk(m

k,0
t )1+σk +

1

2
b2eς

2
k

(
σ2
k(1 + σk)(m

k,0
t )1+2σk

1 + 2σk

)

+ (1−mk,1
t )

(
ηςjσj(m

j,h
t )1+σj +

1

2
a2eς

2
j

(
σ2
j (1 + σj)(m

j,h
t )1+2σj

1 + 2σj

))
+ log ct(0, 0) (3.6)

Thus we have obtained a utility function for the family. But ideally we
would like to express this as a function of the variables that form part of

1This approximation lets σj , σk be general, and uses a trapezoid approximation to the
integrals.
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the general equilibrium, namely H1
t , Un

1
t , H

0
t , C

1
t . Performing this change of

variables is the subject of the next section.

3.3.3 Reparametrising the utility function

Recall that we have expressed the employment levels in the model as func-
tions of the three simple marginal levels, along with log(ct(0, 0)). If we use
the employment levels to substitute into 3.4 and 3.5, we can treat the four
external variables H1

t , Un
1
t , H

0
t , C

1
t as functions of the internal variables, that

is: 
H1
t

Un1
t

H0
t

C1
t

 = f


mk,1
t

mk,0
t

mj,h
t

log(ct(0, 0))

 (3.7)

If we are able to invert the function f somehow, then we can obtain the
utility function as a function of the four external variables. Recall that if
the Jacobian matrix of the function f , Jf , has a non-zero determinant in a
particular point, then f is invertible in that point, and (Jf )

−1 = J(f−1).

Invertibility of f

Using the C++ library GiNaC, we can verify that the determinant is gen-
erally non-zero. In certain corner points, the matrix does not exist due to
division by zero (see below), but in the other corner points, the determin-
ant is non-zero. In the interior, the matrix is computationally complex and
extensive analysis has not been attempted, but all indications are that it is
invertible across the entire interior. Thus f is invertible, which we would
indeed expect: In the same way that certain marginal levels cause a certain
level of employment and consumption to come about, then we should be able
to consumption and employment levels that cause certain marginal levels to
come about.

The matrix J is large and cumbersome to handle, taking several hours
to invert by computer in full generality. Either we must find a simple corner
point, where certain effects disappear, or else we insert numerical values for
our parameters already at this early stage. The final option that presents
itself is to simplify the model. This last option is investigated in the next
chapter. For now, let us consider the corner points of the model at hand.

Note firstly that if mk,0
t = mk,1

t = 0, then no one will join the credit
market game, and C1

t is indeterminate due to division by zero. Thus this
will not do. Although mj,h

t can be zero as long as mk,1
t > 0, since even
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though no households with high credit aversion join the labour market, some
households with medium and high credit aversion will (that is mj,m

t and mj,h
t

are both positive), so we get H0
t > 0.

Indeed, choosing for example the point
mk,1
t

mk,0
t

mj,h
t

log ct(0, 0)

 =


1
0
0
0

 ,

and setting σk = σj = 1 to avoid division by zero when inserting this point
into the differentials, the matrix is much more manageable and can be inver-
ted by use of a well-chosen algorithm, which will be explained in the next
section.

Inverting the Jacobian

To invert Jf , we use the Cayley-Hamilton formula given by:

(det Jf ) J
−1
f =

(
Tr3 Jf − 3 Tr Jf Tr J2

f + 2 Tr J3
f

6

)
I

−

(
Tr2 Jf − Tr J2

f

2

)
Jf + (Tr Jf ) Jf − J3

f

As mentioned above though, this is only computationally possible in spe-
cific points. But once the inverse is obtained, the inverse function the-
orem can be invoked, and a rough Taylor approximation to the inverse
can be constructed. Using mk,1

t as an example, for a point x = f(m) ∈(
H1
t , Un

1
t , H

0
t , C

1
t

)T
, where m̄ is the point in which the matrix is inverted, we

get an approximate inverse given by:

mk,1
t (x) ≡ mk,1

t (f(m̄)) +


∂mk,1t
∂H1

t

∂mk,1t
∂Un1

t

∂mk,1t
∂H0

t

∂mk,1t
∂C1

t



T

(x− f(m̄))

Where for notational convenience we omitted the fact that the derivatives
are evaluated in the point f(m̄). Note that the derivatives are obtained
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directly from J−1f . Other choices of points for the inversion point of the
Jacobian can also be chosen, and rational points in the interior can also be
inverted in reasonable time. Each of these will then produce different linear
approximations to the marginals.

These expressions can then be substituted into the utility function to re-
express it as a function of the external variables. But the utility function will
not be separable, since J−1f generally only has non-zero entries.

For the point considered in the previous section, we can write out these
approximate inverse functions, but unfortunately, the linear nature of the
approximation means that the inverse functions are very sensitive, easily
producing values for the marginals outside the permissible ranges of [0, 1].
This is due to the fact that three out of four variables on each side are assumed
to be within zero to one, while the last one in each case can take on arbitrary
values. This in turn means that the first order conditions derived from the
utility function will not be valid if they produce invalid internal values. To
solve this, the point m̄ must be chosen both so that the matrix is tractable,
and so that the errors resulting from the first-order Taylor approximation
above are kept under control.

3.4 The maximisation problem for the family

Assuming the problems above regarding choosing a point m̄ could be solved,
we can consider the macroeconomic behaviour of the family. Thus we assume
the family seeks to maximise expected discounted utility:

max

{
Et

∞∑
t=0

βtU
(
C1
t , C

0
t , H

1
t , H

0
t

)}

s.t. PtC
1
t +QtBt ≤ Bt−1

H1
t−1 + Un1

t−1

H1
t + Un1

t

+W 1
t

H1
t

H1
t + Un1

t

PtC
0
t = W 0

t

H0
t

H0
t + Un0

t

,

where β ∈]0, 1[ is the fixed intertemporal discount factor for the family.2

To maintain consistency at this point, we interpret C1
t and C0

t as per
capita consumption. Thus labour income in both cases also has to be per
capita, and due to the size of the segments not being one, and possibly

2It is interesting to consider how this value should be set, since the family is an aggregate
of households, where each household may be optimising one period and rule of thumb the
next.
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varying over time, we gain the additional complication with the fraction and
per capita bond holdings needing to be adjusted from one period to the next.

Several complications present themselves very quickly though. Refer back
to (3.6), and note how each place one of the four internal variables is listed,
we would need to substitute in a linear combination of the four external
variables. This means that the partial derivatives in this general model are
too long to be of much use, preventing easy analysis and making closing
the DSGE model very complicated. This, along with the reasons outlined
above regarding the matrix Jf motivate the next chapter where we develop
a reduced model.
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Chapter 4

A Reduced Model

4.1 Introduction

Analysing the model outlined above, with four internal independent vari-
ables, proves to be computationally complex. The Jacobian matrix especially
is impossible to invert in full generality1, meaning that obtaining a satisfact-
ory reparametrisation of the utility function is very difficult. Additionally,
having each internal variable dependent on each of the four external vari-
ables means that the first-order conditions for the family are impractically
large. Instead, we here develop a reduced model by removing the possibility
of obtaining credit when unemployed.

The reduction in size of the model, and the dimensional reduction of the
Jacobian Matrix, means that inversion is possible, and the analysis becomes
significantly clearer, but also means that we lose one of the interesting as-
pects of the model, namely whether the government should pressure banks
to favour certain types of households in evaluating loan applications, since
now, only employed households may obtain credit.

4.2 From six strategies to four

In regards to the formal development of this reduced model, we achieve the
effect outlined above by fixing mk,0

t = 0. Additionally, we set σk = σj = 1 for
computational and analytical tractability. This further means that Un0

t = 0,
and the two remaining independent employment levels can be calculated
exactly.

1At first attempt, the program ran for 16 hours on a 3.4 GHz processor, at which
point it ran out of RAM. Use of the Cayley-Hamilton formula did reduce this significantly
though.

25
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Thus, the amount of employed households with credit access is:

H1
t =k1

(
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)
mk,1
t

+
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2
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+
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And the amount of employed households without credit access is:

H0
t =η(mj,h

t ) + a2eςj(m
j,h
t )2

+
1

2

(
2a2eςkk1(m
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ης2kb

2
e

ςj
+ 2a2eς

2
kb

2
e(m

j,h
t ) +

a2eς
2
kk

2
1

ςj

)
(mk,1

t )3

+
1

2

a2eς
3
kk1b

2
e

ςj
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+
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4
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(mk,1
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t

Note that, pleasingly, when mk,1
t = 0, then H1

t = 0, and the expression
for H0

t collapses to the one found in [Christiano et al., 2010], namely

η(mj,h
t ) + a2eςj(m

j,h
t )2.

Furthermore, when mk,1
t increases, then H1

t also increases, for positive
choices of parameters. This is due to the nature of mj,m

t , which is increasing
in mk,1

t for positive choices of parameters over the range of ψ in which it
applies.

Additionally, the internal resource constraints of the family simplify to:
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ψ

φ

mj,h
t

mj,m
t

mk,1
t

1

1

H1
t

H0
t

H0
t

O

Figure 4.1: A sketch showing the partitioning of the unit square of households
according to their outcome.

C1
t = ct(1, 1)

C0
t =

H0
t

1−H1
t

ct(1, 0) +
1−H1

t −H0
t

1−H1
t

ct(0, 0)

This partition is simple enough that we can represent it graphically in
Figure 4.1, where H1

t and H0
t are respectively shaded and hatched. Note that

the shape of the regions are not accurate, since we are depicting probabilities
across a continuum, but are rather representations of the results arising from
households with lower φ put in a greater effort in the job market. This causes
a greater mass of employed households with low aversion to work. Similarly,
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we get a greater mass of households for lower values of ψ choosing to enter
the credit market game.

Note that the figure is drawn such that the probability of obtaining a job
even for households with φ = 0 is less than one. It is more difficult though
to indicate in this drawing that for example the household characterised by
φ = ψ = 0 does indeed join the labour market, likely puts in a large effort,
and also puts in a large effort in the job market. This is again due to the
fact that we are dealing with continuums and attempting to draw integrals
of probabilities.

4.3 Obtaining the marginal functions

4.3.1 Reducing the size of the problem

In this reduced model, we only have three internal independent variables,
namely mk,1

t ,mj,h
t , log ct(0, 0). Additionally, Un1

t = 0 by definition. So we
are left with three external variables of interest: H1

t , H
0
t , C

1
t . This means

that we have reduced the size of Jf to a 3× 3 matrix.

Furthermore, note that H1
t , H

0
t are in fact independent of log ct(0, 0). This

is due to the internal dynamics of the family: households choosing to enter
the two games do so in expectation of a reward relative to not participating.
Changing the reward to non-participation, log ct(0, 0), will mean that house-
holds will demand a proportionally increased reward to participation in the
games, meaning that log ct(1, 0) and log ct(1, 1) will have to increase. But
this proportional increase is already captured in the definition of mj,h

t and
mk,1
t as given in (3.1) and (3.3).

On the other hand, since C1
t = ct(1, 1) in this model, and ct(1, 1) is de-

termined by the internal incentive constraints of the family in a simple addit-
ive fashion, then changes in mk,1

t and mj,h
t can be dealt with separately from

changes in log ct(0, 0). Thus, we can reduce the problem of reparametrising
the dynamics to one of inverting the function

f : [0, 1]2 7→[0, 1]2

f

(
mk,1
t

mj,h
t

)
=

(
H1
t

H0
t

)
and the parametrised function

g : R 7→R
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given by, where lower case letters of the external variables denote log-levels
(specifically c1t = logC1

t ):

c1t = log ct(1, 1)

=g

(
log ct(0, 0)

)
=F k + 2ςkm

k,1
t + Fj + 2ςjm

j,h
t − log ct(0, 0)

Thus we have significantly simplified the model from the previous chapter.
Now we need only deal with inverting a 2× 2 matrix.

4.3.2 Inverting the Jacobian

So let us begin by examine the function f . The Jacobian matrix of this
function takes the following form:

Jf =

 ∂H1
t

∂mk,1t

∂H1
t

∂mj,ht
∂H0

t

∂mk,1t

∂H0
t

∂mj,ht


The matrix is computationally tractable in full generality, and in general,

det J 6= 0. But again, the matrix itself and its determinant are very long
(the entries of the matrix are included in the appendix). It is worth noting
the value of the determinant along one of the edge cases:

det(Jf )|mk,1t =0 =
3ς2j (mj,h

t )2ηa2ek1 + 2ς3j (mj,h
t )3a4ek1 + ςj(m

j,h
t )η2k1

ςj

So the matrix is singular in at least one point: mk,1
t = mj,h

t = 0, but in
general, the determinant being a large complex polynomial over the domain
[0, 1]2, the matrix is non-singular.

Thus by the inverse function theorem, we can write:

J−1f (m) = J(f−1) (f(m)) ,

for a point m ∈
(
mk,1
t

mj,h
t

)
.

This means that we can find the derivatives of the marginals with respect
to the employment levels. The problem though is that, as in the previous
chapter, we only know the derivatives in the point f(m), and not having any
practical way to find f−1, we will need to make do with a Taylor expansion,
as described next.
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4.3.3 Constructing the inverse function

To find the marginals as a function of the external variables, we construct
a Taylor approximation as in the previous chapter. Denote by x a point(
x1
x2

)
∈
(
H1
t

H0
t

)
. Then we can construct a Taylor approximation to the

coordinates of the inverse function. Using the first coordinate as an example:

mk,1
t (x) ≈ mk,1

t (x̄) +
∂mk,1

t

∂H1
t

(x̄) (x1 − x̄1) +
∂mk,1

t

∂H0
t

(x̄) (x2 − x̄2)

One problem with this method immediately presents itself: Recall that
the partial derivatives above are obtained evaluated in the point f(m), which
means we are not actually choosing a point x̄ for our Taylor expansion, but
a point m̄. Note the subtle problem here: if we want to choose x̄ close to
the steady state value of employment levels, we need to find the point m̄
which has the property f(m̄) = x̄. But to do this easily, we need to know
the inverse function analytically, which is exactly what we are unable to do.

Overlooking these problems for now, we can collect constants, and get
functions of the form:

mk,1
t ≈κk + κk1H

1
t + κk0H

0
t

mj,h
t ≈κj + κj1H

1
t + κj0H

0
t

Where the κ coefficients are long and complex expressions too large to
write out in full, but later in this thesis, tables are presented for the variations
in these coefficients as k1 changes.

It will be useful later to also have the marginals expressed as functions of
log-employment. We can do this by using the differentials of h1t , h

0
t instead

in the Jacobian. In this case, we get even more odious coefficients, but can
still invert the matrix and write:

mk,1
t ≈µk + µk1h

1
t + µk0h

0
t

mj,h
t ≈µj + µj1h

1
t + µj0h

0
t

Turning now our attention to the other function, g, we see that to obtain
log ct(0, 0) as a function of the external variables, we can substitute in our
linear inverse to the marginals obtained above, to get:
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log ct(0, 0) =c1t − F k − F j − 2ςkm
k,1
t − 2ςjm

j,h
t

≈c1t − F k − F j − 2 (ςkκk + ςjκj)

− 2 (ςkκk1 + ςjκj1)H
1
t − 2 (ςkκk0 + ςjκj0)H

0
t

or alternatively:

log ct(0, 0) =c1t − F k − F j − 2ςkm
k,1
t − 2ςjm

j,h
t

≈c1t − F k − F j − 2 (ςkµk + ςjµj)

− 2 (ςkµk1 + ςjµj1)h
1
t − 2 (ςkµk0 + ςjµj0)h

0
t

4.3.4 Recovering C0
t

When later considering aggregate production at the macroeconomic level, it
will be useful to have an expression for C0

t . This can be obtained by taking
the resource constraint of the rule of thumb segment, and plugging in the
incentive compatibility constraints upon the consumption levels (noting that
C1
t = ct(1, 1)):

C0
t =
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)

Note thus that C0
t increases one-for-one with C1

t . Thus, inserting the
approximate inverse functions, we get:

C0
t =C1

t e
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×
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1−H1
t

+

(
1− H0

t

1−H1
t

)
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t )−2ςjµj1(H0
t )−2ςjµj0

]
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Taking logs of the above, we see there will be a problem with the last
term of the product. The term represents the effects of employed rule of
thumb households having to share with non-working households, and as such
we know it is is increasing in H0

t , since more employed households in the
rule of thumb segment of the family will mean a greater consumption to be
shared out. (Recall that a greater mj,h

t is implied by a greater H0
t , so the

exponent will grow as well.) Similarly, it is decreasing in 1 − H1
t , which is

the size of the rule of thumb segment: more households present means less
consumption per household. Note also that for all possible values of H0

t , the
term will be positive.2

It is certainly possible to simplify this expression further to get an ap-
proximate, but tractable expression for log-deviations of c0t around steady
state. Various attempts have indeed been made by the author, but no sat-
isfactory compromise between accuracy and tractability has been found, so
let us simply collect it all into a function Fcrt : [0, 1]2 7→ R and write:

C0
t ≡C1

t Fcrt(H
1
t , H

0
t ) (4.1)

4.4 The utility function

As discussed in the previous chapter, several choices regarding the utility
function of the family might be made. In this section we shall deduce optim-
ality conditions for two alternative methodologies, respectively the ”aggreg-
ate utility” approach, and a naive contract theoretical approach.

4.4.1 The aggregate approach

In this reduced model, due to reducing the number of strategies in existence,
we also reduce the length of the expression, and by the choice of σk = σj = 1
we can write out an exact expression as a function of the three internal
variables:

2This is in fact a requirement of our model for positive F j : The average consumption in
the rule of thumb family must be higher than the consumption level enjoyed by households
without a job.
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Note that the utility function is increasing in all of the internal marginals.
This makes sense, since individual households will only participate in the job
market game if they have a private benefit from doing so, and likewise for
the credit market game.

This utility function, containing a lot of higher-order terms, becomes ex-
ceedingly cumbersome to handle and deduce first order conditions for, so we
somewhat arbitrarily drop all but the first and third lines of the expression,
since the first line deals with households with high credit aversion, and the
third line is the simplest line to capture both k1 and be. Thus we are left
with:

U ≡ log ct(0, 0) + ηςj(m
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Into the above simplified utility function we may then substitute the
expressions obtained above for the marginals, so that we obtain a utility
function expressed as a function of the three external variables:

U(C1
t , H

1
t , H

0
t )

= logC1
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4.4.2 A simplifying approach

As previously discussed, alternative modelling approaches to the family could
certainly be considered. The main reason for this would be to obtain a simpler
Z(H1

t , H
0
t ), so that the first order conditions which are to be considered later

take on a simpler form.
As a naive suggestion, suppose the utility function for the family is simply

given by:

U(C1
t , H

1
t , H

0
t ) = logC1

t −
(H1

t )
1+ϕ

1 + ϕ

This is technically possible, since C0
t and H0

t will adjust based on the in-
centive compatibility inside the family, and the budget constraint for the rule
of thumb households. Indeed, there may even be multiple possible choices
for the family for H0

t , which reflect internal choices of mj,h
t ,mk,1

t .
One possible interpretation of the above utility function would be that

the family does not care explicitly about the welfare of the rule of thumb
households. There is of course a secondary effect, in that by incentive com-
patibility inside the family, C0

t will increase when C1
t does. Likewise, if H1

t

decreases, then H0
t may also decrease, since less households with medium

credit aversion will need to join the job market game for example.
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It is not immediately clear whether the optimal choices resulting from this
utility function in equilibrium would in fact require the family to somehow
dictate effort levels of the households, and thus whether we have completely
left the realms of both game theory and contract theory. It seems that, by
announcing consumption levels ct(0, 0), ct(1, 0), ct(1, 1) and letting the house-
holds react, no coercion is needed. But we overlook verifying this for now,
recalling that the main point here was to propose a very simple Z(H1

t , H
0
t )

function to allow for alternative simpler optimality conditions.

4.5 Optimality conditions of the family

Dependent on our choice of utility function above, we will of course obtain
different optimality conditions. In general, the two utility function specific-
ations do have similarities though, and thus we solve the general problem
first.

4.5.1 The maximisation problem for the family

It is prudent in this model to be careful regarding the optimality condi-
tions. So they shall be derived using the dynamic programming method in
[Tønners, 2013]. Write the problem faced by the family as a recursive value
function:

V(Bt−1) = max
C1
t ,H

1
t ,H

0
t

{
U
(
C1
t , H

1
t , H

0
t

)
+ βEtV(Bt)

}
= max

C1
t ,H

1
t ,H

0
t

{
logC1

t − Z(H1
t , H

0
t ) + βEtV(Bt)

}
And the budget constraint for the optimising segment becomes, after

noting that all members of the optimising household are employed, and by

our assumptions supply one unit of labour each causing the
H1
t

H1
t+Un

1
t

term to

reduce to one:

Bt =
1

Qt

(
Bt−1H

1
t−1

H1
t

+W 1
t − C1

t Pt

)
4.5.2 A dimensional reduction

We use the budget constraint for the rule of thumb segment to express H0
t

in optimum as a function of C1
t and H1

t . This is convenient, since H0
t has no
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influence on the state variable, and means that an optimal path for C1
t and

H1
t will together imply the path for H0

t .
That is, by inserting the incentive-compatibility relation between C0

t and
C1
t given in (4.1) into the rule of thumb budget constraint:
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0
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PtC

1
t

W 0
t

(
e−Fk−2ςkµk

)
(H1

t )−2ςkµk1(H0
t )−2ςkµk0

×
[
H0
t +

(
1−H1

t −H0
t

) (
e−Fj−2ςjµj

)
(H1

t )−2ςjµj1(H0
t )−2ςjµj0

]
Note that for fixed numerical values of ςk, ςj and the µ parameters3 then,

given C1
t and H1

t , this is simply a polynomial in H0
t , the roots of which can

then be found numerically, meaning we can express H0
t as a function of C1

t

and H1
t :

H0
t ≡ S(C1

t , H
1
t ).

Indeed, even for unknown values of the parameters, we can use the im-
plicit function theorem to obtain the derivatives of S, namely SH1

t
and SC1

t
,

which will be needed later. Occasionally it also proves useful to consider H1
t

and H0
t as the fundamental variables, and solve for C1

t . In this case, we get:

C1
t =

W 0
t H

0
t

Pt (1−H1
t )Fcrt (H1

t , H
0
t )

For now, by substituting in the above for H0
t as well as the optimising

segment’s constraint we arrive at the following maximisation problem in two
control variables:

max
C1
t ,H

1
t

{
logC1

t − Z(H1
t , S(C1

t , H
1
t )) + βEtV

 Bt−1H1
t−1

H1
t

+W 1
t − C1

t Pt

Qt

}
3Recall though that the µ parameters may contain k1, so these parameters will be

subject to shocks.
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4.5.3 The optimality conditions

The first order condition of this with respect to C1
t is thus, where we drop

the function arguments for notational convenience:

1

C1
t

− ZH0
t
SC1

t
= βEtV′ (Bt)

Pt
Qt

(4.2)

and similarly with respect to H1
t :

ZH1
t

+ ZH0
t
SH1

t
= βEtV′ (Bt)

Bt−1H
1
t−1

Qt (H1
t )

2 (4.3)

Combining (4.2) and (4.3), we get the following intratemporal optimality
condition:

ZH1
t

+ ZH0
t
SH1

t

1
C1
t
− ZH0

t
SC1

t

=
Bt−1H

1
t−1

Pt (H1
t )

2 (4.4)

We see that the intratemporal optimality condition for the family is actu-
ally state-dependent, being influenced by the amount of income saved from
the previous period. The state-dependence comes about due to the fact that
the size of the optimising family is not fixed: If Bt−1H

1
t−1 is large, households

know that there is a large additional income available for consumption if they
put in the effort and join the optimising family. This is a significant depar-
ture from the standard model: state-dependence in this case would usually
require a capital stock.

It is worth noting that the optimality condition is not necessarily inde-
pendent of wage levels. Indeed, W 0

t enters through the Z function. But
superficially, the optimality condition is indeed independent of W 1

t . This is
due to the fact that (as will be shown later) W 1

t adjusts to reflect the relative
scarcity of H0

t with respect to H1
t .

For the intertemporal optimality condition, we employ the envelope the-
orem to differentiate V(Bt−1) with respect to Bt−1 and get:

V′(Bt−1) =
β

Qt

EtV′(Bt)

Inserting this into (4.2) we get:

1

C1
t

− ZH0
t
SC1

t
= PtV′(Bt−1)
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Which, forwarded one period gives:

1

C1
t+1

− ZH0
t+1
SC1

t+1
= Pt+1V′(Bt)

and finally implies an Euler equation of the form:

1

C1
t

− ZH0
t
SC1

t
= βEt

[ 1
C1
t+1
− ZH0

t+1
SC1

t+1

Pt+1

]
Pt
Qt

So, due to the presence of rule of thumb consumers in the family, and
the internal interaction between the rule of thumb and optimising segments,
our Euler equation takes on a more complicated shape than usual. Although
using (4.4) we can express the optimal H1

t at least implicitly as a function of
C1
t , and then substitute this into the Euler equation to eliminate employment,

bearing in mind that the assumptions of our model put an upper limit on
H1
t .

Explicit results

Note that in our alternative utility function specification above, then ZH0
t

=
0, and thus the optimality conditions reduce and become:

C1
t

(
H1
t

)2+ϕ
=
Bt−1H

1
t−1

Pt

1

C1
t

= βEt

[ 1
C1
t+1

Pt+1

]
Pt
Qt

which in log-linear give the following intratemporal optimality condition:

b1t−1 + h1t−1 − pt = c1t + (2 + ϕ)h1t

where bt = logBt. Additionally, we get the standard Euler equation:

c1t = − log β + logQt + Et[πt+1] + Et[c
1
t+1]

= Et[c
1
t+1]− (it − Et[πt+1]− ρ)

where it = − logQt, and ρ = − log β.
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A short comment is probably due here: Even with this extremely sim-
plified and strongly lacking in micro-foundations utility function, we still
preserve the effect of the games upon the behaviour of the economy, since
the dynamics of the family, with involuntary unemployment and involun-
tary credit scarcity, will still apply and play in when we come to consider
production and equilibrium in more ways than we see here.
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Chapter 5

Production

5.1 Introduction

In this model, being that focus is very much on the household side of things,
we seek to let production be as standard as possible. To whit, we postulate
intermediate goods producers subject to Calvo price rigidities each having a
Cobb-Douglas production function taking as inputs H1

t , H
0
t , and each side of

the family buying a consumption index of these intermediate goods.

5.2 The consumption index

Implicitly in the previous chapters, C1
t and C0

t were consumption indices
of the intermediate goods. Borrowing notation from [Gaĺı, 2008], and not-
ing that the logic remains unchanged in our environment, we arrive at the
following definitions.

C1
t =

(∫ 1

0

C1
t (i)1−

1
εdi

) ε
ε−1

C0
t =

(∫ 1

0

C0
t (i)1−

1
εdi

) ε
ε−1

Pt =

(∫ 1

0

Pt(i)
1−εdi

) 1
1−ε

From these consumption indices, we get the set of demand equations:

41
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C1
t (i) =

(
Pt(i)

Pt

)−ε
C1
t

C0
t (i) =

(
Pt(i)

Pt

)−ε
C0
t

Thus, by calculating the weighted average of these two demand levels,
the demand curve facing the producer of the i’th intermediate good is then
a weighted average of the two demands, denoted here by Ct(i):

Ct(i) = H1
t C

1
t (i) + (H0

t + Un0
t )C

0
t (i)

=

(
Pt(i)

Pt

)−ε(
H1
t C

1
t + (1−H1

t )C0
t

)
≡
(
Pt(i)

Pt

)−ε
Ct

Where we have introduced Ct as the weighted average of the two aggregate
consumption levels.

We are not overly concerned with the fact that employment enters into
the demand curve. The actions of the individual monopolist will not influence
aggregate employment, ruling out the possibility of a monopolist choosing to
increase production to increase employment in an attempt to shift up the
demand curve.

Thus, the demand curve is functionally identical to the one in Gali, in
that the firm can only affect Pt(i).

5.3 Intermediate goods

A continuum of intermediate goods exists, spread along the unit interval.
Each intermediate good is produced by a monopolist, using the following
production function:

Yi,t = At
(
H1
i,t

)α1
(
H0
i,t

)α0 .

That is, rule of thumb and optimising households supply different types
of labour, which enter into a standard Cobb-Douglas production function.
Depending on the sum of α1 + α0, we can achieve various returns to scale.
We shall mainly consider decreasing returns to scale, and when analytically
necessary, impose constant returns to scale.

Each intermediate goods monopolist is subject to Calvo price frictions,
meaning that only a fraction 1− θ may adjust their price each period.
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5.3.1 Aggregate price dynamics

As in [Gaĺı, 2008], θ becomes an index of price stickiness, and the log-
linearised aggregate price dynamics are unchanged in this setup, so they
are given by:

πt = (1− θ)(p∗t − pt−1) (5.1)

5.3.2 Optimal employment ratios

The intermediate goods monopolist seeks to minimise expenditure given a
certain level of production. This implies a relationship between H1

i,t and H0
i,t.

The Lagrangian for this is:

W 1
t H

1
i,t +W 0

t H
0
i,t − λ

(
Yi,t − At

(
H1
i,t

)α1
(
H0
i,t

)α0
)

Which has first order conditions, after substituting in the constraint:

W 1
t + λα1

(
Yi,t
H1
i,t

)
= 0

W 0
t + λα0

(
Yi,t
H1
i,t

)
= 0

Implying (by solving for λ, equating and rearranging to insert into the
constraint) optimal employment levels of:

H1
i,t =

(
Yi,t
At

(
W 0
t α1

W 1
t α0

)α0
) 1

α1+α0

H0
i,t =

(
Yi,t
At

(
W 1
t α0

W 0
t α1

)α1
) 1

α1+α0

And a cost function of the form:

Ψt

(
W 1
t ,W

0
t , Yi,t

)
=W 1

t

(
Yi,t
At

(
W 0
t α1

W 1
t α0

)α0
) 1

α1+α0

+W 0
t

(
Yi,t
At

(
W 1
t α0

W 0
t α1

)α1
) 1

α1+α0

=

(
Yi,t
At

) 1
α1+α0

(
W 1
t

(
W 0
t α1

W 1
t α0

) α0
α1+α0

+W 0
t

(
W 1
t α0

W 0
t α1

) α1
α1+α0

)
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5.3.3 Optimal price setting

Optimal price setting in the above environment means that a firm re-optimising
at time t will choose the optimal price Pt which maximises expected discoun-
ted profits. That is the firm solves

max
Pt

∞∑
k=0

Et{Qt,t+k(P
∗
t Yt+k|t −Ψt+k(Yt+k,t)}

subject to the sequence of demand constraints

Yt+k|t =

(
P ∗t
Pt+k

)−ε
Yt+k.

We do need to be careful at this stage regarding the definition of the
discount factor Qt,t+k that firms should use. In the standard model, we as-
sume households own the firms, and thus their discount factor applies. In this
model, it seems consistent similarly to assume the family owns the firms, and
thus it should be the discount factor for the family that applies. Dependent
on our assumption about the utility function this is a quite complex object.
This further motivates using the simplified utility function. Regardless, we
define Qt,t+k from the Euler equation to be:

Qt,t+k = βkEt

[ 1
C1
t+k
− ZH0

t+k
SC1

t+k

1
C1
t
− ZH0

t
SC1

t

]
Pt
Pt+k

,

which significantly simplifies with the simplified utility function.
Being that we have modelled our producers closely on [Gaĺı, 2008], the

conclusions regarding optimal price setting remain unchanged. To whit,
steady state marginal costs are constant and equal to frictionless marginal
costs, and Qt,t+k = βk in steady state. All of this implies that we can obtain
the following log-linearised optimal price setting relationship:

p∗t − pt−1 = (1− βθ)
∞∑
k=0

(βθ)kEt{mct+k|t −mc+ pt+k − pt−1} (5.2)

5.3.4 Marginal cost

Marginal costs come from differentiating the total costs with respect to Yt+k|t.
We have already developed an expression for nominal TC, namely Ψ, so let
us differentiate this to obtain nominal marginal costs:
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∂Ψt+k|t

∂Yt+k|t
=
Y

1−α1−α0
α1+α0

t+k|t A
−1

α1+α0
t+k

α1 + α0

(
W 1
t+k

(
W 0
t+kα1

W 1
t+kα0

) α0
α1+α0

+W 0
t+k

(
W 1
t+kα0

W 0
t+kα1

) α1
α1+α0

)
Without further assumptions, this expression is quite cumbersome, thus

let us investigate a few simplifying assumptions we might make:

Common marginal productivities

If we assume α1 = α0 = α and α < 1
2
, then nominal marginal costs become:

∂Ψt+k|t

∂Yt+k|t
=
Y

1−2α
2α

t+k|t A
−1
2α
t+k

2α

(
W 1
t+k

(
W 0
t+k

W 1
t+k

) 1
2

+W 0
t+k

(
W 1
t+k

W 0
t+k

) 1
2

)

=
Y

1−2α
2α

t+k|t A
−1
2α
t+k

α

(√
W 1
t W

0
t

)
And taking logs and dividing by the price level, we get:

mct+k|t =
yt+k|t − at+k

2α
− yt+k|t +

w1
t+k + w0

t+k

2
− pt+k − logα.

Initially, this seems like a very attractive assumption, but it turns out
that this assumption is problematic with respect to the internal dynamics
of the family. The reason for this is to be found in the optimality condition
for the producers in this case implying W 1

t H
1
t = W 0

t H
0
t , meaning that the

total labour income for the rule of thumb and optimising segments are the
same. To square this with the internal dynamics of the family, which require
considerably higher consumption levels for the optimising segment due to
incentive compatibility, will mean thatH1

t will need to be significantly smaller
thanH0

t , andW 1
t much higher thanW 0

t for optimising households to maintain
their higher per capita consumption. A way out would of course be for the
optimising family to take out loans to finance the higher consumption level,
so we will occasionally note interesting behaviours under common marginal
productivities to see how they play out.

Differing marginal productivities

The alternative to common marginal productivities is of course differing mar-
ginal productivities. In addition, we will for parts of the thesis assume con-
stant returns to scale, which will be commented upon later.
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For now, simply assume α1+α0 ≤ 1, thus nominal marginal costs become:

∂Ψt+k|t

∂Yt+k|t

=
Y

1−α1−α0
α1+α0

t+k|t A
−1

α1+α0
t+k

α1 + α0

(
W 1
t+k

(
W 0
t+k (α1)

W 1
t+kα0

) α0
α1+α0

+W 0
t+k

(
W 1
t+kα0

W 0
t+k (α1)

) α1
α1+α0

)

=
Y

1−α1−α0
α1+α0

t+k|t A
−1

α1+α0
t+k

α1 + α0

(
W 1
t+k

) α1
α1+α0

(
W 0
t+k

) α0
α1+α0

((
(α1)

α0

) α0
α1+α0

+

(
α0

(α1)

) α1
α1+α0

)

=kmc

(
Y 1−α1+α0

t+k|t

At+k

(
W 1
t+k

)α1
(
W 0
t+k

)α0

) 1
α1+α0

where kmc =

(
α1
α0

) α0
α1+α0 +

(
α0
α1

) α1
α1+α0

α1+α0
.

If we divide by the price level and take logs, we get:

mct+k|t = log kmc +
yt+k|t − at+k + α1w

1
t+k + α0w

0
t+k

α1 + α0

− yt+k|t − pt+k

Constant returns to scale

As mentioned above, in parts of the thesis we will further assume constant
returns to scale. Thus, we get the simple expression:

mct+k|t = α1w
1
t+k + α0w

0
t+k − pt+k − at+k + log k1

where the constant reduces to: kmc =
(
α1

α0

)α0

+
(
α0

α1

)α1

.

We note that in the CRS case, marginal costs for the intermediate firm
are independent of when the price was last adjusted, thus all firms share
the same marginal costs. This means a lot of the dynamics of the standard
DSGE model disappear, but due to the complexity of the interaction between
optimising households, rule of thumb households, and their respective em-
ployment levels, we will need this assumption to keep the scope of the model
reasonable.



Chapter 6

Equilibrium

6.1 Introduction

As discussed in the chapter on production, we shall assume that households
with credit access are more productive. Furthermore, we shall employ the
reduced model developed in chapter 3. Under these assumptions, we can use
the equilibrium and optimality conditions to close our DSGE model.

6.2 Clearing in the goods market

Production equals consumption for every intermediate good:

Yi,t =H1
t C

1
t (i) + (1−H1

t )C0
t (i)

Thus aggregate production must equal aggregate consumption, where we
silently define Yt as the weighted index over Yi,t. Note first that aggregate
output is closely related to C1

t due to the internal dynamics of the family,
where we use the expression for C0

t from (4.1):

Yt =H1
t C

1
t + (1−H1

t )C0
t

=H1
t C

1
t + (1−H1

t )C1
t Fcrt(H

1
t , H

0
t )

≡C1
t Fagr(H

1
t , H

0
t )

where we defined Fagr : R2 7→ R as a notational convenience that shall be
used imminently. We note that

Fagr(H
1
t , H

0
t ) = H1

t + (1−H1
t )Fcrt(H

1
t , H

0
t )

47
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Note the structure of this, in that each segment of the family has a differ-
ent weight in determining aggregate production, dependent on how far their
consumption is away from that of the optimising employed households.1 Note
also that we have expressed aggregate production as a product of C1

t multi-
plied by a function of the employment levels only.

The above condition is often used to re-express the Euler equation in
terms of the output gap. In our case, it is technically possible, but we see
that we will not be able to escape the influence of the employment levels.
An alternative option presents itself, which is to express the Euler equation
as a function of employment and technology levels only.

To do this, use the aggregate production function obtained below to write:

C1
t =

At (H1
t )
α1 (H0

t )
α0

Fagr(H1
t , H

0
t )

And, assuming the simplified utility function from previously, we can
obtain an Euler equation relating current employment levels with one-period
ahead expectations and inflation:

Fagr(H
1
t , H

0
t )

At (H1
t )
α1 (H0

t )
α0

= βEt

[
1

Pt+1

Fagr(H
1
t+1, H

0
t+1)

At+1

(
H1
t+1

)α1
(
H0
t+1

)α0

]
Pt
Qt

Which, for a suitable choice of log-linearisation around the natural levels
of employment2 gives:

ζh1h̃
1
t + ζh0h̃

0
t = Et

[
ζh1h̃

1
t+1 + ζh0h̃

0
t+1

]
− (it − Et[πt+1]− rnt ) (6.1)

6.3 Clearing in the labour market

We define total employment for the rule of thumb and optimising segments
as:

H1
t =

∫ 1

0

H1
i,tdi

H0
t =

∫ 1

0

H0
i,tdi

1This is unsurprising, considering the internal behaviour of the family.
2See the next chapter for a discussion on their existence.
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Take H1
t as an example. Insert from the optimal employment levels of

the intermediate goods producers to get:

H1
t =

∫ 1

0

(
Yi,t
At

(
W 0
t (α1)

W 1
t α0

)α0
) 1

α1+α0

di

=

(
W 0
t α1

W 1
t α0

) α0
α1+α0

∫ 1

0

(
Yi,t
At

) 1
α1+α0

di

=

(
Yt
At

) 1
α1+α0

(
W 0
t α1

W 1
t α0

) α0
α1+α0

∫ 1

0

(
Pt(i)

Pt

) −ε
α1+α0

di

And, taking logs, we get:

h1t =
α0

α1 + α0

(w0
t − w1

t ) +
yt − at
α1 + α0

+
α0

α1 + α0

ln

(
α1

α0

)
− dt

h0t =
α1

α1 + α0

(w1
t − w0

t ) +
yt − at
α1 + α0

+
α1

α1 + α0

ln

(
α0

α1

)
− dt

Dropping the dt term (following Gali, who argues it is small in a region
around steady state), and rearranging the second to insert into the first, we
get:

h1t =
α0

α1 + α0

(
−α1 + α0

α1

h0t +
yt − at
α1

+ ln

(
α0

α1

))
+

yt − at
α1 + α0

+
α0

α1 + α0

ln

(
α1

α0

)
=
yt − at
α1

− α0

α1

h0t

If we rearrange this, we get:

yt = at + α1h
1
t + α0h

0
t

Note that this implies an approximate aggregate production function of
Yt = At (H1

t )
α1 (H0

t )
α0 , which strongly suggests that aggregate marginal costs

will look similar to firm level marginal costs. But a formal derivation of this
fact is done below:
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6.4 Aggregate marginal costs

To obtain aggregate marginal costs, we may integrate firm level marginal
costs across i ∈ [0, 1]. Thus:

MCt+k

=

∫ 1

0

kmc
Pt+k

(
Y 1−α1−α0

t+k|t

At+k

(
W 1
t+k

)α1
(
W 0
t+k

)α0

) 1
α1+α0

di

=
kmc

Pt+kYt+k

(
Yt+k
At+k

) 1
α1+α0 (

W 1
t+k

) α1
α1+α0

(
W 0
t+k

) α0
α1+α0

∫ 1

0

(
Pt+k|t
Pt+k

)−ε(1−α1−α0)
α1+α0

di

Where the second equality follows from the demand schedule under goods
market clearing. Thus, taking logs, we get:

mct+k = ln kmc − yt+k − pt+k +
yt+k − at+k + (α1)w

1
t+k + α0w

0
t+k

α1 + α0

+ dt+k

where dt+k, although different from above, can still be assumed to be zero
close to steady state.

Thus, by calculating the difference between firm level marginal costs and
aggregate marginal costs, we obtain:

mct+k|t =mct+k +
1− α1 − α0

α1 + α0

(
yt+k|t − yt+k

)
=mct+k −

ε(1− α1 − α0)

α1 + α0

(p∗t − pt+k)

where the second equation comes from the demand schedule, since a firm
that last adjusted its price at time t chose the price p∗t . This result is the
same as the one found in Gali, when we account for the differences in the
production function. Note that when we have constant returns to scale,
mct+k|t = mct+k, as expected.

Thus, as in Gali, we can substitute this into the optimal price setting
equation, (5.2), and obtain

p∗t − pt−1 = (1− βθ)
∞∑
k=0

(βθ)kEt{Θm̂ct+k + (pt+k − pt−1)}
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Where our Θ = α1+α0

α1+α0+ε(1−α1−α0)
is different from Gali due to the different

production function. Note that Θ < 1 as long as α1 + α0 < 1, that is the
total returns to scale are decreasing.

When we have CRS meanwhile, the marginal costs drop out completely,
since mct+k = mc, the frictionless marginal cost.

The difference equation p∗t − pt−1 = βθEt(p
∗
t+1 − pt) + (1− βθ)Θm̂ct + πt

gives an equivalent representation, which can be inserted into the equation
for the development of the price level, (5.1), to get:

πt = βEt{πt+1}+ λm̂ct (6.2)

where λ = (1−θ)(1−βθ)
θ

Θ. Meanwhile, under CRS, the equation becomes
almost trivial:

πt = βEt{πt+1}

6.5 Obtaining the NKPC

Rewrite the expression for aggregate marginal costs:

mct = log kmc − yt − pt +
yt − at + α1w

1
t + α0w

0
t

α1 + α0

To obtain a NKPC for our model, we will need to be very careful, consid-
ering the state-dependency of our intratemporal optimality conditions. Thus

we start by inserting w1
t = w0

t + h0t − h1t + log
(
α1

α0

)
, which is implied by the

first order conditions of the aggregate production function:

mct = log kmc − yt + w0
t − pt +

yt − at + α1

(
h0t − h1t + log

(
α1

α0

))
α1 + α0

Substitute out the yt in the fraction using the production function:
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mct = log kmc − yt + w0
t − pt +

α0h
0
t + α1

(
h0t + log

(
α1

α0

))
α1 + α0

= log kmc − yt + w0
t − pt + h0t +

α1 log
(
α1

α0

)
α1 + α0

= log kmc − yt + c0t + log(1−H1
t ) +

α1 log
(
α1

α0

)
α1 + α0

=− logα0 + log

(
(1−H1

t )Fcrt(H
1
t , H

0
t )

Fagr(H1
t , H

0
t )

)
Where the penultimate equality follows from the behaviour of the rule

of thumb households, and the final equation uses the previously established
relationships between respectively Yt and C0

t with C1
t , and collects constants.

As in Gali, marginal costs will be constant under flexible prices. But to
obtain the same log-deviation of marginal costs away from steady state, we
need to be sure that H1

t and H0
t have well-defined equilibrium values under

flexible prices. This will be investigated in the next chapter. If they do,
we can express deviations in marginal cost as a function of deviations from
”natural” levels of the employment levels. This means we can write, for a
suitable choice of log-linearisation:

m̂ct =ηh1h̃
1
t + ηh0h̃

0
t

At this stage, we can insert into (6.2) and get:

πt = βEt[πt+1]− λ
(
ηh1h̃

1
t + ηh0h̃

0
t

)
(6.3)

Thus, we have managed to express both the NKPC (6.3) and the Euler
equation (6.1) in terms of the same variables, namely current and future
employment levels, but it still remains to conclude whether our dynamic
system has two free variables, inflation and h̃1t , or whether, due to the state

dependency of the optimality conditions, we will also need to include h̃0t .
Being that we have not yet used the intratemporal optimality condition it
seems likely that once we invoke this, h̃1t will be sufficient, and the rest will
follow from this.

Unfortunately, due to the late stage at which a major mistake in the
budget constraints was discovered, no attempt has been made to pursue this
further. We will briefly comment on the relation monetary policy has on the
model though:
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6.6 The interest rates

For the sake of convenience, the Euler equation is repeated below. Note how
the nominal interest rate and the natural interest rate feature:

ζh1h̃
1
t + ζh0h̃

0
t = Et

[
ζh1h̃

1
t+1 + ζh0h̃

0
t+1

]
− (it − Et[πt+1]− rnt )

In our model, we can thus define the natural rate of interest as:

rnt = ρ+ Et[4c1,nt+1]

in this case, we as previously need to check whether c1,nt has a well-defined
relationship with ynt . This will be dealt with in the next chapter.

For the nominal interest rate we simply assume a Taylor-style rule. But,
not having fully ascertained whether we have one or two independent real
variables in the system, we cannot make any further headway here.
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Chapter 7

Steady State and Natural
Levels

7.1 Introduction

In conventional DSGE models, we distinguish between steady states, often
further specified as zero inflation ones, and natural levels of certain vari-
ables, specifically output, but [Christiano et al., 2010] also uses his model to
examine natural rates of unemployment. In the previous chapter, we allowed
ourself to rewrite the NKPC and Euler equations as deviations around the
natural rates of employment, with the caveat that these values might not be
well-defined. Specifically, the real per capita bond income of the optimising
segment, which influences the optimal number of optimising households, is
of concern. In this chapter, these issues will be addressed.

7.2 Consumption levels

In steady state, we will have
W 1
t H

1
t

W 0
t H

0
t

= α1

α0
from the optimality conditions of

the (in steady state) representative intermediate goods producer. This means
that the labour market income of the optimising households will be larger
than that of the rule of thumb households, due to their greater importance
in the production process. If we insert the budget constraints of each part of
the family, we get:

H1
t PtC

1
t +H1

tQtBt −Bt−1Ht−1

PtC0
t (1−H1

t )
=
α1

α0
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There is one specific point we shall make here. In [Gaĺı et al., 2007], it
is assumed steady state consumption levels for the two segments are equal,
that is C0

t = C1
t . This is done if necessary by the imposition of a targeted

lump sum tax. Unfortunately in our model, this is not possible: Since house-
holds choose by their own volition to put in the effort to join the optimising
segment, they will expect a return on their investment of effort. If C1

t were
the same as C0

t , for positive Fk, no households would choose to become op-
timising.

Another problem is that a differential lump sum tax in our model is
not non-discretionary: Households can change their behaviour to avoid a
differential tax of this type, by changing their effort levels to avoid the tax.
Thus, we see that C1

t must be higher than C0
t . This is also why we have

assumed α1 > α0: The rationale for this choice is that it will push up wage
levels for the optimising segment, increasing the scope for C1

t to remain higher
than C0

t .
Being that C1

t and C0
t are generally not equal, we might consider the

related question as to what value
C0
t

Yt
take in steady state and under price

flexibility. Recall that by equilibrium, and and using the internal constraints
of the family, C0

t and Yt both divide cleanly by C1
t . Thus:

C0
t

Yt
=
Fcrt(H

1
t , H

0
t )

Fagr(H1
t , H

0
t )

Immediately we see that the ratio is exclusively determined by H1
t and

H0
t , and independent of technology, interest rates and the like.1 Thus, if H1

t

and H0
t have well-defined levels under price flexibility, then this ratio also

takes on a well-defined value. The same applies analogously for C1
t . Thus,

let us look at employment levels.

7.3 Employment levels

The natural levels of employment will be determined by equilibrium when
price frictions are zero. Given a path for the natural level of output, and
using the optimality conditions of the family to tie H1

t and H0
t together,

along with the first order conditions of the producers, it seems plausible that
natural levels of employment have meaningful interpretations in our model.
But recall the discussion in the introduction regarding real per capita bond
income, which strongly indicates we need a path for bond holdings as well,

1Since neither of the two functions are dependent on these things.
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which in turn will be influenced by the Euler equation. Time constraints
resulting from the late stage at which this issue was noticed mean that this
has not been studied further.

Steady state employment levels in our model provide an interesting topic
for analysis as well. Refer to the intratemporal equilibrium condition of the
family under simplified utility, and set H1

t = H1
t−1 = H1. Additionally, Pt

can be normalised to one, since there is zero inflation, and bond holdings as
well as consumption must be constant. In this case, we get:

C1
(
H1
)2+ϕ

= BH1

which implies

B

C1
= H1+ϕ.

Thus given a steady state B for the optimising family, H0 will be tied
down using

H0 = S

(
B

H1+ϕ
, H1

)
.

Note though, that ∂H0

∂B
> 0. This can be related again to the fact that the

larger income available to optimising households motivates households to join
the labour market. Indeed, ∂H1

∂B
> 0 as well. This state-dependency in the

family dynamics was certainly not expected at the outset, but it allows us to
regard the games with a different lens.
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Chapter 8

Calibration

8.1 Introduction

When choosing parameter values for any model, we seek values that are both
justifiable empirically, and conductive to the mathematical assumptions of
the model. In the model at hand, we will pay close heed to this second object-
ive, since we have several probabilities and variables such as the employment
levels which are restricted to certain intervals.

8.2 The family dynamics

The family dynamics, as mentioned before, are an expanded version of the
model found in [Christiano et al., 2010]. As such, certain parameters in our
model will be chosen similarly.1 Recall that we have previously set σj =
σk = 1 to allow analytic solutions to the integrals. The parameter values we
choose are reported in Table 8.1.

We can test these values within the family model by trying reasonable
values for mk,1

t ,mj,h
t and log ct(0, 0). If we let mk,1

t = 1
2
, mj,h

t = 3
4
, and

log ct(0, 0) be free, we ensure all households have optimal success probabilities
less than one in both games, and employment levels of H1

t = 0.121, H0
t =

0.406 for example.

Note that we have chosen η and ae to be half that of what Christiano has.
The reason for this is partially to compensate for our choice of σj = 1, and
partially due to the fact that households with medium credit aversion in our
model will have a greater incentive to join the labour market than households

1Christiano et al embed their model in various DSGE models, and occasionally choose
very different parameter values dependent on the rest of the model.
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Variable name Our value Value in Christiano

η 0.43 0.86
ae 0.265 0.53
k1 0.4 + shock -

(bj) -
(bg) -
(bx) -
be 0.2 -
Fj 1.39 1.39
Fk 3.8 -
ςj 4.64 4.64
ςk 2 -

Table 8.1: The parameters of the family dynamics

in Christiano do, since having a job in our model is a precondition for getting
credit.

8.2.1 Maximal value of the marginals

Of course, our marginal levels will be determined by the macro-economic
equilibrium, and we will need to check, especially for high employment levels,
that the corresponding marginal levels and probabilities are admissible. In-
deed, with the chosen parameter values, we have maximal permissible values
for the two marginals given by the condition that the household with the
least aversion to both work and credit chooses effort levels such that optimal
probabilities are less than one. The choice of ek,1t turns out not to be binding,
so we have:

1 ≥ p(ej,mt )φ=0,ψ=0 = 0.430 + 0.112mk,1
t + 0.651mj,h

t + 0.022
(
mk,1
t

)2
. (8.1)

8.2.2 The Taylor-approximations

With the chosen parameter values, the elements of the matrix J become:
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J [1, 1] =0.021
(
mk,1
t

)2
+ 0.172mj,h

t + 0.005
(
mk,1
t

)3
+ 0.052

(
mj,h
t

)2
mk,1
t + 0.114mj,h

t mk,1
t + 0.130

(
mj,h
t

)2
+ 0.027mj,h

t

(
mk,1
t

)2
+ 0.030mj,h

t + 0.004mj,h
t

(
mk,1
t

)3
J [1, 2] =0.057

(
mk,1
t

)2
+ 0.009

(
mk,1
t

)3
+ 0.261mj,h

t mk,1
t

+ 0.052mj,h
t

(
mk,1
t

)2
+ 0.172mk,1

t

J [2, 1] =0.003
(
mk,1
t

)2
− 0.172mj,h

t − 0.002
(
mk,1
t

)3
− 0.052

(
mj,h
t

)2
∗mk,1

t − 0.001mj,h
t mk,1

t − 0.130
(
mj,h
t

)2
− 0.004mj,h

t

(
mk,1
t

)2
+ 0.044mk,1

t − 0.004mj,h
t

(
mk,1
t

)3
J [2, 2] =− 0.001

(
mk,1
t

)3
− (0.430 + (0.652mj,h

t )(mk,1
t − 1)

+ 0.391mj,h
t mk,1

t − 0.052mj,h
t

(
mk,1
t

)2
+ 0.258mk,1

t

where a few higher-order terms with coefficients less than 0.001 have been
omitted. The inverse matrix of this, taken in a particular point, will then be
used to create the Taylor approximations using the employment levels.

A sensible choice for this inversion point might be what we might term
balanced maximal participation, namely a point mk,1

t = mj,h
t such that (8.1)

is satisfied with equality. Solving this quadratic equation gives mk,1
t = mj,h

t =
0.731 truncated to three significant figures. In this case, the matrices JH and
Jh, along with their respective inverses, become:

JH =

[
0.324 0.320
−0.186 0.620

]
, Jh =

[
1.737 1.714
−0.532 1.774

]
J−1H =

[
2.383 −1.229
0.715 1.245

]
, J−1h =

[
0.444 −0.429
0.133 0.435

]

and using that H1
t (0.731, 0.731) = 0.186 and H0

t (0.731, 0.731) = 0.350,
we can write out the Taylor approximations to the marginals as:
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mk,1
t = 0.716 + 2.383H1

t − 1.229H0
t

mj,h
t = 0.162 + 0.715H1

t + 1.245H0
t

along with

mk,1
t = 1.026 + 0.444h1t − 0.429h0t

mj,h
t = 1.412 + 0.133h1t + 0.435h0t .

Note of course that dependent on the chosen inversion point, these coef-
ficients might change sign. Indeed, recall that our inversion point is in the
upper permissible range for our model.

One thing that is worth noting in our model is that, likely due to the
choice of σj = 1, the total number of households in employment is rather
low, only slightly above 50%, even at this upper permissible level for the
marginals and high level of k1. This is definitely a major issue when inter-
preting the results obtained from this model. It also means that we must
ensure a calibration for the rest of the model that is compatible with these low
employment levels, even during upturns, to avoid exceeding the permissible
ranges.

8.2.3 The impact of k1

Note in the above that we have silently folded k1 into the coefficients. This
will be rectified now. In Tables 8.2 and 8.3, we report the coefficients of the
Taylor approximations as k1 is varied. In each case, we leave all other para-
meters the same and keep the inversion point as mk,1

t = mj,h
t = 0.731. Note

that for the value k1 = 0.5 reported in the table, we exceed the permissible
range for the probabilities in the inversion point, but decreasing k1 does not
pose these problems.

We can use this table to compare the optimality conditions of the family
as k1 changes, and to gain an understanding of the maximal permissible
employment levels as we change k1. Recall that the implied mk,1

t and mj,h
t

should be below 1 for the values of H1
t and H0

t considered. This will be
explored further in the next chapter.

8.3 The aggregate variables

In addition to the µ and κ parameters resulting from the internal dynamics
of the family, we need to choose suitable values for the other variables in the
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k1 κk κk1 κk0 κj κj1 κj0

0.5 0.713 1.742 -1.238 0.156 0.744 1.278
0.4 0.716 2.383 -1.229 0.162 0.715 1.245
0.3 0.719 3.342 -1.207 0.169 0.691 1.211
0.2 0.722 4.922 -1.160 0.175 0.677 1.177
0.1 0.726 7.988 -1.054 0.182 0.689 1.144
0.0 0.729 16.40 -0.735 0.189 0.797 1.113

Table 8.2: The effects of varying k1 on the coefficients of the first Taylor
approximations.

k1 µk µk1 µk0 µj µj1 µj0

0.5 0.872 0.406 -0.389 1.448 0.174 0.401
0.4 1.026 0.444 -0.429 1.412 0.133 0.435
0.3 1.213 0.474 -0.462 1.368 0.098 0.463
0.2 1.437 0.489 -0.481 1.316 0.067 0.488
0.1 1.688 0.473 -0.468 1.259 0.041 0.508
0.0 1.812 0.348 -0.346 1.191 0.017 0.524

Table 8.3: The effects of varying k1 on the coefficients of the second Taylor
approximations.
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Variable name Value Comment

β 0.99 Discount factor.
θ 0.75 Price stickiness.
ϕ 1 Simplified utility function CRRA parameter.
α1 0.5 Importance of H1

t to production process.
α0 0.25 Importance of H0

t to production process.
ε 6 Consumption index parameter.

Table 8.4: The remaining parameters of the DSGE model

model. Note that the chosen β is often seen when the period is assumed to
be three months, ε is chosen to correspond to λf in Christiano, α1 and α0

are chosen so as to sum to less than one and ϕ would ideally be calibrated to
approximate the micro-founded Z(H1

t , H
0
t ) function, but has here just been

chosen to reflect quadratic disutility, in correlation with the households’ effort
cost.



Chapter 9

The effect of a shock to k1

9.1 Introduction

One of the main motivations for constructing any economic model is to ex-
amine the effects of changes, both to variables and parameters. In the case
of a DSGE model, it is common practice to examine the effects of parameter
shocks to a model in steady state.

In this current thesis, we face a few difficulties with this approach. First of
all, the difficulty in finding an expression for steady state, and the deviations
of variables away from steady state. Secondly, and linked to this, the time
to implement the model in Dynare was too large. Thus, in this chapter we
shall attempt to trace the effects of a shock to k1 ”by hand” as it were. Let
us begin with the simplified utility function, which allows easy analysis of
the optimality conditions.

9.2 Effects on incentive compatibility

Assume the output gap is currently zero. This implies bxxt−1 = 0. Thus the
remaining components of k1 are bggt and bjjt. Suppose an increase in gt is
implemented, which was the government pressure on banks to extend credit.

In the internal model of the family, mj,h
t is not affected. Neither is mk,1

t .
But mj,m

t is: its slope changes. That is more households with medium credit
aversion will join the job market. This means that H1

t and H0
t will both

increase: some will succeed, and some will fail, but more households in total
are joining the job market game and credit market game.

In the internal model we cannot predict what effect this will have on
the consumption levels though. The ratios will not change, since these are
determined by mk,1

t and mj,h
t , but the levels might change. Note though that
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this effect thus functions to put upward pressure on C0
t : Less unemployed

households to support and more households to support them will bring up
the average consumption. One problem with this analysis is that it sidesteps
the fact of whether consumption levels will change within the family. This
is easier to consider from the DSGE model. Note though that increasing
government pressure on banks to lend out money does not directly affect
mk,1
t : people that had no intention of joining the credit market due to high

credit aversion parameters will not join even if it is easier to join. To achieve
this effect, we would need consumption levels promised to the households to
change.

In the external model meanwhile, we see that k1 enters through the para-
meters of the inverse function to the marginals. From Table 8.2, we can see
that an increase in k1, will have different effects depending on its initial level,
along with the level of H1

t and H0
t respectively. The rationale for this is clear:

the level of mj,h
t and mk,1

t that brought about a particular H1
t and H0

t are
going to be affected by the shape of the derived mj,m

t function.
To progress, let us assume that k1 = 0.3, and that H1

t = 0.1, H0
t = 0.4.

Assume α1 = 1
2

and α0 = 1
4
. Thus, by the first order condition of the

aggregate production function, we can set W 1
t = 8 and W 0

t = 1. Assume
Pt = 1, and thus

C0
t =

W 0
t H

0
t

1−H1
t

=
4

9
.

By incentive compatibility, we can thus solve for the implied C1
t , using

the parameter values established previously and inserting into (4.1):

4

9
=C1

t

(
e−Fk−2ςkµk

)
(H1

t )−2ςkµk1(H0
t )−2ςkµk0

×
[

H0
t

1−H1
t

+

(
1− H0

t

1−H1
t

)(
e−Fj−2ςjµj

)
(H1

t )−2ςjµj1(H0
t )−2ςjµj0

]
=C1

t

(
e−3.8−2·2·1.213

)
(0.1)−2·2·0.474(0.4)2·2·0.462

×
[

0.4

1− 0.1
+

(
1− 0.4

1− 0.1

)(
e−1.39−2·4.64·1.368

)
(0.1)−2·4.64·0.098(0.4)−2·4.64·0.463

]
=0.00112 · C1

t ,

which implies that the C1
t required by incentive compatibility in this case is

C1
t ≈ 397.

It is worth commenting on this very large difference between the two
values: Households are assumed to have logarithmic utility of consumption,
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but their cost of credit maintenance and effort costs are either linear or
quadratic. Thus, if we compare utilities stemming from consumption, we see
that the difference between the two numbers is much smaller:

log(397)− log

(
4

9

)
= 2.95.

Recall that households choosing to participate in the credit market game
do so only if their ex-ante utility of joining the game is positive. In this
sense, the magnitude of this number matches closely with our fixed cost of
credit, Fk = 3.8. Initially, this seems to suggest that our inverse function
is underestimating the required C1

t , since even with a very small effort and
very low credit aversion, the difference in realised utility in the success state
is negative. But upon further thought, note that we are comparing C0

t and
C1
t , and even though C1

t = ct(1, 1), then ct(1, 0), which is the relevant ”fail-
ure” state for a household participating in the credit game, has the property
ct(1, 0) > C0

t .
What happens when k1 increases, either as a result of government pres-

sure, or a positive output gap? If we set k1 = 0.4, keep H1
t and H0

t un-
changed, and redo the calculation for the implied C1

t using the µ values from
the previous chapter, we get C0

t = 0.00203C1
t , and thus C1

t = 218.9. This is
interesting, since this effect is independent of our assumption that one seg-
ment of the family should be rule of thumb, but may act to further exaggerate
the pro-cyclical nature of rule of thumb consumption. The lower implied C1

t

is exclusively a result of increasing the chance of success in the credit market
game, and thus to obtain the same ex-ante utility, a lesser outcome in the
success state is required.

One problem with this analysis of course is we ignored changes in em-
ployment levels. Indeed, as argued previously, a higher k1 should increase
both H1

t and H0
t . So if k1 increases, we should expect the employment levels

in the new equilibrium to adjust as well.

9.3 Impacts on aggregate production

Changes to k1 do not directly affect producers, in that neither A,α1, α0 nor
ε are affected. But note that if we use the micro-founded utility function,
then optimal price setting will be affected. Specifically, Qt, defined from the
Euler equation, will be affected by the changes in Z(H1

t , H
0
t ).

But even though producers are not affected directly, we see that a signi-
ficant effect of k1 in the dynamic system is through the NKPC. Referring to
the expression for mct that (6.3) is based on, we see that marginal cost in
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our model is a function of employment levels and also acting through Fcrt,
which we have noted above changes when k1 changes. Additionally, the Euler
equation can also be expressed using Fcrt, so this will also be affected by a
shift in k1.

9.4 The optimality conditions of the family

Recall the dependence of the optimising segment’s budget constraint on per
capita bond payouts. This implies that our intratemporal optimality condi-
tion, (4.4) is state dependent. Under the simplified utility specification, we
have:

C1
t

(
H1
t

)2
+ ϕ =

Bt−1H
1
t−1

Pt

For shifts in k1, note that the RHS is not affected. Thus, the LHS must
stay the same. As previously noted, if k1 increases and employment levels
are held fixed, then C1

t must decrease by incentive compatibility.1 But we
see that this is not compatible with the optimality condition. Indeed, for
ϕ > −2, C1

t and H1
t must move in opposite directions for the optimality

conditions of the family to be maintained.
If we assume that C1

t does indeed decrease and H1
t increases as a result of

the shift in k1, we can maintain the intratemporal optimality of the family.
Turning now to intertemporal optimality, if the increase in k1 is assumed
temporary, then we see there are conflicting effects regarding our expectation
on C1

t+1: on the one hand, the greater number of optimising households, and
their smaller consumption this period may lead to increased bond purchases.
This means the income available to optimising households next period is
higher, which may translate into increased consumption. On the other hand,
if per capita income for the optimising family falls along with C1

t , since H1
t

increases, lowering the wage rate, then per capita bond purchases might be
stagnant or fall. In this case C1

t+1 may decrease further or revert to its
previous value.

9.5 Effects on aggregate production

Note though that by the above optimality condition for the family, for ϕ >
−1, then C1

tH
1
t is going to increase when k1 increases. This can be verified

1Assuming the wage levels do not change, then income for rule of thumb households
remains unchanged due to the change in k1.
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as follows:
Denote C1

a and H1
a as the values with k1 = 0.3. Denote by C1

b and H1
b

the values with k1 = 0.4. In both cases, the intratemporal optimality for the
family must be satisfied. Assume ϕ = 1. Thus:

C1
a

C1
b

=

(
H1
b

H1
a

)3

Note that for a decrease in consumption, meaning that the fraction on

the left is less than one, this implies
H1
b

H1
a
> C1

a

C1
b
. Thus, we get as postulated

that C1
bH

1
b > C1

aH
1
a .

This is interesting, since it implies, by goods market clearing, that at
least one component of aggregate production, which was defined as Yt =
C1
tH

1
t + (1 − H1

t )C0
t , increases. The second component, consumption for

rule of thumb households, is less obvious, but if we assume H0
t increases,

along with the fact that H1
t also increasing, then we see, by the internal

budget constraint of the rule of thumb family, that C0
t must also increase.2

Thus, there is a preliminary indication that increases in k1 increase aggregate
production.

9.6 Impacts on inflation

It is worth recalling that our model is standard enough that inflation is de-
termined by expectations regarding future inflation, along with deviations in
marginal cost. Marginal costs are also, since we assumed DRS, high when
aggregate production is high. As noted above, an increase in k1 might bring
about an increase in aggregate production. And thus, we might see an in-
crease in inflation.

2But this would in turn increase the implied C1
t required by incentive compatibility!
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Chapter 10

Conclusion

In this thesis, a relatively large game-theoretical model of household beha-
viour has been embedded into a DSGE model. Although time constraints
precluded sophisticated numerical simulation in Dynare, and little attention
has been paid to aspects such as the exogenous processes of shocks, the
exercise has still been fruitful, highlighting several curious mechanisms in
the model and giving tentative support to the hypothesis that government
pressure on banks to increase credit availability can affect aggregate output
significantly.

10.1 Main results

In this section, three main results will be highlighted. Firstly, the state
dependency of the family’s optimisation problem. Due to the variable size
of the two segments from one period to the next, we had to be very careful
regarding a consistent specification of the budget constraints. The need to
express variables at their per capita levels meant that past behaviour of the
optimising segment would affect current optimal allocations by the family.
This effect was unexpected, and complicated the first order conditions of
the family significantly; to the extent that several standard substitutions to
obtain closed form solutions to the DSGE system were not possible. But
it highlighted an interesting aspect of endogenous family composition where
the optimising behaviour of households within the family needs to be very
closely considered.

Secondly, the family construction in which households must invest effort
to transition from one stage to another provided a novel connection between
the behaviour of rule of thumb households and optimising households. Incent-
ive compatibility relations within the family imposed alternative assumptions
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on consumption levels in steady state and would complicate the imposition of
taxes to fund a government, being that lump sum taxes would be avoidable.
Also, the game-theoretical approach to household behaviour allowed us to
characterise several distinct strategies and provided a detailed framework for
understanding heterogeneity among households.

Finally, we made some headway on answering the main research question
of the thesis, by examining the effect of changes to k1, which encompassed
government pressure on banks, on employment levels, consumption levels,
and aggregate output. We saw that k1 affected the model in several ways,
and tentatively concluded that government pressure on banks to increase
lending may be warranted as an effective measure to raise aggregate output.

10.2 Limitations

The main limitation of the theoretical framework for this thesis is arguably
our modelling of bank behaviour and government. Being that the thesis set
out to investigate government pressure on banks, it would certainly have
been preferable to include an endogenous model of government and pressure
on banks, either through a nationalisation decision, or through a mechan-
ism by which the government must choose between changes to expenditure
and applying pressure on the banks, reflecting the limited number of policy
changes that can be made during any period. Also, a consistent model of
the banks would certainly have been beneficial, perhaps by introducing them
as a separate class of producer, owned by patient households, similar to how
[Iacoviello and Neri, 2010] model a housing market.

Limitations in scope and power of our model were also imposed, dis-
tracting from a particularly interesting sub-question of the original research
question. By removing the ability of unemployed households to gain credit,
we were unable to extend the model to considerations regarding which house-
holds should be granted credit. Admittedly, allowing unemployed households
to obtain credit would likely have required a reason for our family to choose a
particular level of unemployed optimising households, but if we further intro-
duced some kind of stickiness to the total size of the two segments, we would
be able to discuss aspects such as how long to allow unemployed households
to maintain credit, or in other words, how long to keep bad loans on the
books. This aspect might even allow us to re-interpret the model to describe
policy responses regarding sub-prime mortgages.

Finally, computational issues even in the reduced model presented sig-
nificant problems with the analysis and conclusions. Chief among these is
probably the necessity of invoking the simplified utility function for the fam-
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ily with insufficient justification and modification of household and family
behaviour. It would have been preferable to obtain a separable polynomial
approximation to the utility function, which would allow us to express the
first-order conditions for the family more accurately, while retaining tractab-
ility.

10.3 Further research

Due to both time constraints and unexpected complications in the interac-
tions between the game-theoretical model and the rest of the macroeconomic
system, the scope of this thesis is smaller than originally envisioned. The
obvious next step is to close the model fully, and implement it in Dynare to
allow comparison with related models and a proper analysis of the dynamics
resulting from shocks to k1 in combination with technology shocks.

As mentioned above, the most pressing extension to the model would
certainly be some sort of persistence in household states. One might imagine
Calvo-style frictions on the number of optimising households, and combining
this with a labour union to provide a model for wage levels. Additionally, if
persistence in states were implemented, then the single family could be split
into two, each separately optimising, since households which start the period
in the optimising family would allow us to construct an aggregate behaviour
for that family to ensure for example that as few households as possible are
forced out of the credit markets.

Finally, introducing capital into the model would enable several aspects
of inequality in wealth and income to be studied. In this way, we would get
an interpretation of why households would be unemployed and optimising,
if we specified the firms to be owned by the optimising households only. We
could then imagine households with high aversion to work, but low credit
aversion to be rentiers, choosing to accumulate and manage capital instead
of working.
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Appendix A

Obtaining the Employment
Levels

A.1 Basic components

As mentioned in the thesis, we can aggregate the optimal behaviour of the
households to obtain the employment levels. This involves handling several
integrals, which shall be dealt with in this appendix. Note that we remain as
general as possible in this appendix, but also provide results for the reduced
model. But first, when evaluating the integrals below, we shall need some
basic relations, which will be established here. Note that the antiderivative
of fj(m

j,h
t , φ) is

∫
fj(m

j,h
t , φ)dφ = ςj

(
(1 + σj)(m

j,h
t )σjφ− φ1+σj

)
,

and furthermore that

∫ mj,ht

0

fj(m
j,h
t , φ)dφ = ςjσj(m

j,h
t )1+σj .
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Also,∫ mj,ht

0

f 2
j (mj,h

t , φ)dφ

=

∫ mj,ht

0

ς2j (1 + σj)
2
(

(mj,h
t )2σj − 2(mj,h

t )σjφσj + φ2σj
)
dφ

= ς2j (1 + σj)
2

[
(mj,h

t )2σjφ− 2(mj,h
t )σjφ1+σj

1 + σj
+

φ1+2σj

1 + 2σj

]mj,ht
0

= ς2j (1 + σj)
2

(
(mj,h

t )2σjmj,h
t −

2(mj,h
t )σj(mj,h

t )1+σj

1 + σj
+

(mj,h
t )1+2σj

1 + 2σj

)

=

(
2ς2j σ

2
j (1 + σj)(m

j,h
t )1+2σj

1 + 2σj

)
.

The above relations hold analogously for fk(m,ψ). Additionally, we will
need several antiderivatives relating to fk(m,ψ).

∫ mk,0t

0

fk(m
k,1
t , ψ)fk(m

k,0
t , ψ)dψ

=

∫ mk,0t

0

ς2k(1 + σk)
2
(

(mk,1
t )σk(mk,0

t )σk − (mk,0
t )σk(ψ)σk − (mk,1

t )σk(ψ)σk + (ψ)2σk
)
dψ

=ς2k(1 + σk)
2

[
(mk,1

t )σk(mk,0
t )σkψ − (mk,0

t )σk(ψ)1+σk

1 + σk
− (mk,1

t )σk(ψ)1+σk

1 + σk
+

(ψ)1+2σk

1 + 2σk

]mk,0t
0

And also:∫ mk,0t

0

f 2
k (mk,1

t , ψ)fk(m
k,0
t , ψ)dψ

=

∫ mk,0t

0

ς3k(1 + σk)
3
(

(mk,1
t )2σk(mk,0

t )σk − 2(mk,1
t )2σkψσk − 2(mk,1

t )σk(mk,0
t )σkψσk

)
dψ

+

∫ mk,0t

0

ς3k(1 + σk)
3
(

2(mk,1
t )σkψ2σk + (mk,0

t )σkψ2σk − ψ3σk
)
dψ

=ς3k(1 + σk)
3

[
(mk,1

t )2σk(mk,0
t )σkψ − 2

(mk,1
t )2σkψ1+σk

1 + σk
− 2

(mk,1
t )σk(mk,0

t )σkψ1+σk

1 + σk

]mk,0t
0

+ ς3k(1 + σk)
3

[
2

(mk,1
t )σkψ1+2σk

1 + 2σk
+

(mk,0
t )σkψ1+2σk

1 + 2σk
− ψ1+3σk

1 + 3σk

]mk,0t
0
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For f 3
k , the antiderivative is:

∫ mk,1t

mk,0t

f 3
k (mk,1

t , ψ)dψ

=

∫ mk,1t

mk,0t

ς3k(1 + σk)
3
(

(mk,1
t )3σk − 3(mk,1

t )2σkψσk + 3(mk,1
t )σkψ2σk − ψ3σk

)
dψ

=ς3k(1 + σk)
3

[
(mk,1

t )3σkψ − 3(mk,1
t )2σkψ1+σk

1 + σk
+

3(mk,1
t )σkψ1+2σk

1 + 2σk
− ψ1+3σk

1 + 3σk

]mk,1t
mk,0t

Also

∫ mk,1t

mk,0t

f 4
k (mk,1

t , ψ)dψ

=

∫ mk,1t

mk,0t

ς4k(1 + σk)
4
(

(mk,1
t )4σk − 4(mk,1

t )3σkψσk + 6(mk,1
t )2σkψ2σk

)
dψ

+

∫ mk,1t

mk,0t

ς4k(1 + σk)
4
(
−4(mk,1

t )1σkψ3σk + ψ4σk
)
dψ

=ς4k(1 + σk)
4

[
(mk,1

t )4σkψ − 4(mk,1
t )3σkψ1+σk

1 + σk
+

6(mk,1
t )2σkψ1+2σk

1 + 2σk

]mk,1t
mk,0t

+ ς4k(1 + σk)
4

[
−4(mk,1

t )1σkψ1+3σk

1 + 3σk
+

ψ1+4σk

1 + 4σk

]mk,1t
mk,0t
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And also:

∫ mk,1t

mk,0t

f 5
k (mk,1

t , ψ)dψ

=

∫ mk,1t

mk,0t

ς5k(1 + σk)
5
(

(mk,1
t )5σk − 5(mk,1

t )4σkψσk + 10(mk,1
t )3σkψ2σk

)
dψ

+

∫ mk,1t

mk,0t

ς5k(1 + σk)
5
(
−10(mk,1

t )2σkψ3σk + 5(mk,1
t )1σkψ4σk − (mk,1

t )0σkψ5σk
)
dψ

=ς5k(1 + σk)
5

[
(mk,1

t )5σkψ − 5(mk,1
t )4σkψ1+σk

1 + σk
+

10(mk,1
t )3σkψ1+2σk

1 + 2σk

]mk,1t
mk,0t

+ ς5k(1 + σk)
5

[
−10(mk,1

t )2σkψ1+3σk

1 + 3σk
+

5(mk,1
t )1σkψ1+4σk

1 + 4σk
− ψ1+5σk

1 + 5σk

]mk,1t
mk,0t

And also:

∫ mk,1t

mk,0t

f 8
k (mk,1

t , ψ)dψ

=

∫ mk,1t

mk,0t

ς8k(1 + σk)
8
(

(mk,1
t )8σk − 8(mk,1

t )7σkψσk + 28(mk,1
t )6σkψ2σk

)
dψ

+

∫ mk,1t

mk,0t

ς8k(1 + σk)
8
(
−56(mk,1

t )5σkψ3σk + 70(mk,1
t )4σkψ4σk − 56(mk,1

t )3σkψ5σk
)
dψ

+

∫ mk,1t

mk,0t

ς8k(1 + σk)
8
(

28(mk,1
t )2σkψ6σk − 8(mk,1

t )1σkψ7σk + ψ8σk
)
dψ

=ς8k(1 + σk)
8

[
(mk,1

t )8σkψ − 8(mk,1
t )7σkψ1+σk

1 + σk
+

28(mk,1
t )6σkψ1+2σk

1 + 2σk

]mk,1t
mk,0t

+ ς8k(1 + σk)
8

[
−56(mk,1

t )5σkψ1+3σk

1 + 3σk
+

70(mk,1
t )4σkψ1+4σk

1 + 4σk
− 56(mk,1

t )3σkψ1+5σk

1 + 5σk

]mk,1t
mk,0t

+ ς8k(1 + σk)
8

[
28(mk,1

t )2σkψ1+6σk

1 + 6σk
− 8(mk,1

t )1σkψ1+7σk

1 + 7σk
+

ψ1+8σk

1 + 8σk

]mk,1t
mk,0t
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A.2 Evaluating the integrals

A.2.1 integral of q
(

0, ek,0t

)
This integral appears twice, it relates to the probability of households with
low credit aversion obtaining credit when not having a job. It is relatively
simple to integrate, and has a pleasing structure:∫ 1

0

∫ mk,0t

0

q
(

0, ek,0t

)
dψdφ

=

∫ 1

0

∫ mk,0t

0

k0 + bee
k,0
t dψdφ

=

∫ 1

0

∫ mk,0t

0

(
k0 + b2efk(m

k,0
t , ψ)

)
dψdφ

=k0m
k,0
t + b2eςkσk

(
mk,0
t

)1+σk
With k0 = (bggt(0)− bxxt−1).

A.2.2 integral of p
(
ej,ht

)
This integral appears twice. It relates to the probability of households with
high credit aversion obtaining a job. It also has a rather pleasing structure,
and appears in [Christiano et al., 2010].∫ mj,ht

0

∫ 1

mk,1t

p
(
ej,ht

)
dψdφ

=

∫ 1

mk,1t

∫ mj,ht

0

η + a2efj(m
j,h
t , φ)dφdψ

=

∫ 1

mk,1t

mj,h
t η + a2eςjσj

(
mj,h
t

)1+σj
dψ

=
(

1−mk,1
t

)(
mj,h
t η + a2eςjσj

(
mj,h
t

)1+σj)

A.2.3 integral of p
(
ej,mt

)
This integral appears thrice, and relates to the probability of households with
medium credit aversion obtaining a job. This is no longer quite as easy as
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above to evaluate:

∫ mj,mt

0

∫ mk,1t

mk,0t

p
(
ej,mt

)
dψdφ

=

∫ mj,mt

0

∫ mk,1t

mk,0t

η + a2efj(m
j,m
t , φ)dψdφ

Since mj,m
t is a function of ψ, we must integrate with respect to φ first.

Thus we obtain:

=

∫ mk,1t

mk,0t

ηmj,m
t + a2eςjσj(m

j,m
t )1+σjdψ

For general σj, all we can hope to do is a rough numerical integration:

∫ mj,mt

0

∫ mk,1t

mk,0t

p
(
ej,mt

)
dψdφ

≈
(
mk,1
t −m

k,0
t

) η
2

(mj,m
t |mk,1t +mj,m

t |mk,0t )

+
(
mk,1
t −m

k,0
t

) a2eςjσj
2

((
mj,m
t |mk,1t

)1+σj
+
(
mj,m
t |mk,0t

)1+σj)

where the dropped values indicate evaluation in a point.

If σj = 1, we can find the exact result as follows:

∫ mk,1t

mk,0t

ηmj,m
t + a2eςj(m

j,m
t )2dψ

=
η

2ςj

∫ mk,1t

mk,0t

ςj2m
j,m
t dψ +

a2e
4ςj

∫ mk,1t

mk,0t

ς2j 4(mj,m
t )2dψ

This is useful because the contents of each of these integrals is a sum of
the building blocks defined above (by using the definition of mj,m

t laid out in
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the text). Indeed, let us examine first:∫ mk,1t

mk,0t

ςj2m
j,m
t dψ

=

∫ mk,1t

mk,0t

k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ ςj2m

j,h
t dψ

=ςj2m
j,h
t

∫ mk,1t

mk,0t

1dψ

+ k1

∫ mk,1t

mk,0t

fk

(
mk,1
t , ψ

)
dψ

+
1

2
b2e

∫ mk,1t

mk,0t

f 2
k

(
mk,1
t , ψ

)
dψ

All of the integrals in this final expression have been calculated as building
blocks previously.

And then the more intricate integral given by:∫ mk,1t

mk,0t

ς2j 4(mj,m
t )2dψ

=

∫ mk,1t

mk,0t

(
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ ςj2m

j,h
t

)2

dψ

expanding the square, we get:

=

∫ mk,1t

mk,0t

k21f
2
k

(
mk,1
t , ψ

)
+

1

4
b4ef

4
k

(
mk,1
t , ψ

)
+ ς2j 4(mj,h

t )2 + 2
b2e
2
ςj2m

j,h
t f 2

k

(
mk,1
t , ψ

)
+ 2k1

b2e
2
f 3
k

(
mk,1
t , ψ

)
+ 2k1ςj2m

j,h
t fk

(
mk,1
t , ψ

)
dψ

=ς2j 4(mj,h
t )2

∫ mk,1t

mk,0t

1dψ + 4k1ςjm
j,h
t

∫ mk,1t

mk,0t

fk

(
mk,1
t , ψ

)
dψ

+
(
k21 + 2b2eςjm

j,h
t

)∫ mk,1t

mk,0t

f 2
k

(
mk,1
t , ψ

)
dψ + k1b

2
e

∫ mk,1t

mk,0t

f 3
k

(
mk,1
t , ψ

)
dψ

+
1

4
b4e

∫ mk,1t

mk,0t

f 4
k

(
mk,1
t , ψ

)
dψ
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Where, again, all of these integrals have been evaluated analytically pre-
viously.

Collecting terms, we get that in total:∫ mk,1t

mk,0t

ηmj,m
t + a2eςj(m

j,m
t )2dψ

=
(
ηmj,h

t + a2eςj(m
j,h
t )2

)∫ mk,1t

mk,0t

1dψ

+
k1
2ςj

(
η + 2a2eςjm

j,h
t

)∫ mk,1t

mk,0t

fk

(
mk,1
t , ψ

)
dψ

+

a2ek21 + b2e

(
η + 2a2eςjm

j,h
t

)
4ςj

∫ mk,1t

mk,0t

f 2
k

(
mk,1
t , ψ

)
dψ

+
a2eb

2
ek1

4ςj

∫ mk,1t

mk,0t

f 3
k

(
mk,1
t , ψ

)
dψ

+
a2eb

4
e

16ςj

∫ mk,1t

mk,0t

f 4
k

(
mk,1
t , ψ

)
dψ

A.2.4 integral of p
(
ej,lt

)
This integral also appears twice, and relates to the probability of households
with low credit aversion obtaining a job.∫ mj,lt

0

∫ mk,0t

0

p
(
ej,lt

)
dψdφ

=

∫ mj,lt

0

∫ mk,0t

0

η + a2efj(m
j,l
t , φ)dψdφ

Since mj,l
t is a function of ψ, we must integrate with respect to φ first.∫ mk,0t

0

ηmj,l
t + a2eςjσj(m

j,l
t )1+σjdψ

As before, if σj is general, then all we can do is a rough numerical integration:

≈mk,0
t

(
η

2
(mj,l

t |0 +mj,l
t |mk,0t ) +

a2eςjσj
2

((
mj,l
t |0
)1+σj

+
(
mj,l
t |mk,0t

)1+σj))
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But if σj = 1, then again, we note that we can analytically integrate it

by looking at the components of mj,l
t .

That is: ∫ mk,0t

0

ηmj,l
t + a2eςjσj(m

j,l
t )1+σjdψ

=
η

2ςj

∫ mk,0t

0

ςj2m
j,l
t dψ +

a2e
4ςj

∫ mk,0t

0

ς2j 4(mj,l
t )2dψ

Note that, proceeding as before by using the definition of mj,l
t :∫ mk,0t

0

2ςjm
j,l
t dψ

=

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

1dψ

+ k1

∫ mk,0t

0

fk

(
mk,1
t , ψ

)
dψ

− k0
∫ mk,0t

0

fk

(
mk,0
t , ψ

)
dψ

And that∫ mk,0t

0

4ς2j (mj,l
t )2dψ

=

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)2 ∫ mk,0t

0

1dψ

+ k21

∫ mk,0t

0

f 2
k

(
mk,1
t , ψ

)
dψ

+ k20

∫ mk,0t

0

f 2
k

(
mk,0
t , ψ

)
dψ

+ 2k1

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

fk

(
mk,1
t , ψ

)
dψ

− 2k0

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

fk

(
mk,0
t , ψ

)
dψ

− 2k1k0

∫ mk,0t

0

fk

(
mk,1
t , ψ

)
fk

(
mk,0
t , ψ

)
dψ
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Collecting terms, we get:

∫ mk,0t

0

ηmj,l
t + a2eςj(m

j,l
t )2dψ

=

(
ηmj,h

t + a2eςj(m
j,h
t )2 +

a2e
16ςj

b4ef
4
k (mk,1

t ,mk,0
t )

)∫ mk,0t

0

1dψ

+

(
b2ef

2
k (mk,1

t ,mk,0
t )

4ςj

(
η + 2a2eςjm

j,h
t

))∫ mk,0t

0

1dψ

+

(
k1
2ςj

(
η + 2a2eςjm

j,h
t

)
+
a2e
4ςj

k1b
2
ef

2
k (mk,1

t ,mk,0
t )

)∫ mk,0t

0

fk(m
k,1
t , ψ)dψ

−
(
k0
2ςj

(
η + 2a2eςjm

j,h
t

)
+
a2e
4ςj

k0b
2
ef

2
k (mk,1

t ,mk,0
t )

)∫ mk,0t

0

fk(m
k,0
t , ψ)dψ

− 2a2ek1k0
4ςj

∫ mk,0t

0

fk

(
mk,1
t , ψ

)
fk

(
mk,0
t , ψ

)
dψ

+
a2ek

2
1

4ςj

∫ mk,0t

0

f 2
k

(
mk,1
t , ψ

)
dψ

+
a2ek

2
0

4ςj

∫ mk,0t

0

f 2
k

(
mk,0
t , ψ

)
dψ

Which is exact, since all the integrals have been evaluated analytically
previously.

A.2.5 integral of p
(
ej,lt

)
q
(

1, ek,1t

)
This integral is one part of the expression for H1

t , being households with low
credit aversion obtaining both a job and credit.

∫ mj,lt

0

∫ mk,0t

0

p
(
ej,lt

)
q
(

1, ek,1t

)
dψdφ

=

∫ mk,0t

0

q
(

1, ek,1t

)(∫ mj,lt

0

p
(
ej,lt

)
dφ

)
dψ

Note that q
(

1, ek,1t

)
is independent of φ, and we have already calculated

the integral of p
(
ej,lt

)
, so we obtain an approximation in the general case
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given by:

=

∫ mk,0t

0

q
(

1, ek,1t

)(
ηmj,l

t + a2eςjσj

(
mj,l
t

)1+σj)
dψ

≈ηm
k,0
t

2

(
q
(

1, ek,1t |0
)
mj,l
t |0 + q

(
1, ek,1t |mk,0t

)
mj,l
t |mk,0t

)
+
a2eςjσjm

k,0
t

2

(
q
(

1, ek,1t |0
)(

mj,l
t |0
)1+σj

+ q
(

1, ek,1t |mk,0t
)(

mj,l
t |mk,0t

)1+σj)

Or, if we set σj = 1, then:

∫ mk,0t

0

q
(

1, ek,1t

)(
ηmj,l

t + a2eςj

(
mj,l
t

)2)
dψ

=

∫ mk,0t

0

(
k1 + b2efk(m

k,1
t , ψ)

)(
ηmj,l

t + a2eςj

(
mj,l
t

)2)
dψ

=k1

∫ mk,0t

0

(
ηmj,l

t + a2eςj

(
mj,l
t

)2)
dψ +

b2eη

2ςj

∫ mk,0t

0

fk(m
k,1
t , ψ)2ςjm

j,l
t dψ

+
b2ea

2
e

4ςj

∫ mk,0t

0

fk(m
k,1
t , ψ)4ς2j (mj,l

t )2dψ

The integral in the first term has been dealt with above. So thus we need
to examine the last two integrals:

∫ mk,0t

0

fk(m
k,1
t , ψ)2ςjm

j,l
t dψ

=

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

fk(m
k,1
t , ψ)dψ

+ k1

∫ mk,0t

0

f 2
k

(
mk,1
t , ψ

)
dψ

− k0
∫ mk,0t

0

fk(m
k,1
t , ψ)fk

(
mk,0
t , ψ

)
dψ

along with
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∫ mk,0t

0

fk(m
k,1
t , ψ)4ς2j (mj,l

t )2dψ

=

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)2 ∫ mk,0t

0

fk(m
k,1
t , ψ)dψ

+ k21

∫ mk,0t

0

f 3
k

(
mk,1
t , ψ

)
dψ

+ k20

∫ mk,0t

0

fk(m
k,1
t , ψ)f 2

k

(
mk,0
t , ψ

)
dψ

+ 2k1

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

f 2
k

(
mk,1
t , ψ

)
dψ

− 2k0

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

fk(m
k,1
t , ψ)fk

(
mk,0
t , ψ

)
dψ

− 2k1k0

∫ mk,0t

0

f 2
k

(
mk,1
t , ψ

)
fk

(
mk,0
t , ψ

)
dψ

Again, we can collect all the terms from the three integrals, but the
expressions are beginning to get sufficiently large that no particular insight
is gained from writing them out.

A.2.6 integral of p
(
ej,lt

)
q
(

0, ek,0t

)
The integral below relates to the size of Un1

t . We proceed as previously:∫ mj,lt

0

∫ mk,0t

0

p
(
ej,lt

)
q
(

0, ek,0t

)
dψdφ

Note that q
(

0, ek,0t

)
is independent of φ, so as before we obtain:

=

∫ mk,0t

0

q
(

0, ek,0t

)
mj,l
t

(
η + a2eςjσj

(
mj,l
t

)σj)
dψ

≈ηm
k,0
t

2

(
q
(

0, ek,0t |0
)
mj,l
t |0 + k0m

j,l
t |mk,0t

)
+
a2eςjσjm

k,0
t

2

(
q
(

0, ek,0t |0
)(

mj,l
t |0
)1+σj

+ k0

(
mj,l
t |mk,0t

)1+σj)
While if we set σj = 1, we get:
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∫ mk,0t

0

q
(

0, ek,0t

)(
ηmj,l

t + a2eςj

(
mj,l
t

)2)
dψ

=

∫ mk,0t

0

(
k0 + b2efk(m

k,0
t , ψ)

)(
ηmj,l

t + a2eςj

(
mj,l
t

)2)
dψ

=k0

∫ mk,0t

0

(
ηmj,l

t + a2eςj

(
mj,l
t

)2)
dψ +

b2eη

2ςj

∫ mk,0t

0

fk(m
k,0
t , ψ)2ςjm

j,l
t dψ

+
b2ea

2
e

4ςj

∫ mk,0t

0

fk(m
k,0
t , ψ)4ς2j (mj,l

t )2dψ

As before, the first integral has already been examined. The last two integrals
will be examined below:

∫ mk,0t

0

fk(m
k,0
t , ψ)2ςjm

j,l
t dψ

=

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

fk(m
k,0
t , ψ)dψ

+ k1

∫ mk,0t

0

fk(m
k,1
t , ψ)fk

(
mk,0
t , ψ

)
dψ

− k0
∫ mk,0t

0

f 2
k

(
mk,0
t , ψ

)
dψ

along with
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∫ mk,0t

0

fk(m
k,0
t , ψ)4ς2j (mj,l

t )2dψ

=

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)2 ∫ mk,0t

0

fk(m
k,0
t , ψ)dψ

+ k21

∫ mk,0t

0

fk(m
k,0
t , ψ)f 2

k

(
mk,1
t , ψ

)
dψ

+ k20

∫ mk,0t

0

f 3
k

(
mk,0
t , ψ

)
dψ

+ 2k1

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

fk(m
k,0
t , ψ)fk

(
mk,1
t , ψ

)
dψ

− 2k0

(
1

2
b2ef

2
k

(
mk,1
t ,mk,0

t

)
+ 2ςjm

j,h
t

)∫ mk,0t

0

f 2
k

(
mk,0
t , ψ

)
dψ

− 2k1k0

∫ mk,0t

0

f 2
k

(
mk,0
t , ψ

)
fk

(
mk,1
t , ψ

)
dψ

Again, we will need to collect the common terms, but as above, no par-
ticular insight is obtained from this.

A.2.7 integral of p
(
ej,mt

)
q
(

1, ek,1t

)
This is the other part of H1

t , households with medium credit aversion that
manage to obtain a job and credit.

∫ mj,mt

0

∫ mk,1t

mk,0t

p
(
ej,mt

)
q
(

1, ek,1t

)
dψdφ

Following the same reasoning as above, we obtain:

=

∫ mk,1t

mk,0t

q
(

1, ek,1t

)
mj,m
t

(
η + a2eςjσj

(
mj,m
t

)σj)
dψ

≈(mk,1
t −m

k,0
t )

η

2

(
k1m

j,m
t |mk,1t + q

(
1, ek,1t |mk,0t

)
mj,m
t |mk,0t

)
+ (mk,1

t −m
k,0
t )

a2eςjσj
2

(
k1

(
mj,m
t |mk,1t

)1+σj
+ q

(
1, ek,1t |mk,0t

)(
mj,m
t |mk,0t

)1+σj)
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Or if σj = 1, then we get:

∫ mk,1t

mk,0t

q
(

1, ek,1t

)(
ηmj,m

t + a2eςj
(
mj,m
t

)2)
dψ

=k1

∫ mk,1t

mk,0t

(
ηmj,m

t + a2eςj
(
mj,m
t

)2)
dψ +

b2eη

2ςj

∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)2ςjm

j,m
t dψ

+
b2ea

2
e

4ςj

∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)4ς2j (mj,m

t )2dψ

As before, examining the last two integrals, we get:

∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)ςj2m

j,m
t dψ

=

∫ mk,1t

mk,0t

k1f
2
k

(
mk,1
t , ψ

)
+

1

2
b2ef

3
k

(
mk,1
t , ψ

)
+ ςj2m

j,h
t fk(m

k,1
t , ψ)dψ

=ςj2m
j,h
t

∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)dψ

+ k1

∫ mk,1t

mk,0t

f 2
k

(
mk,1
t , ψ

)
dψ

+
1

2
b2e

∫ mk,1t

mk,0t

f 3
k

(
mk,1
t , ψ

)
dψ
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And then the more intricate integral given by:∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)ς2j 4(mj,m

t )2dψ

=

∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)

(
k1fk

(
mk,1
t , ψ

)
+

1

2
b2ef

2
k

(
mk,1
t , ψ

)
+ ςj2m

j,h
t

)2

dψ

=

∫ mk,1t

mk,0t

(
k21 + 2b2eςjm

j,h
t

)
f 3
k

(
mk,1
t , ψ

)
+

1

4
b4ef

5
k

(
mk,1
t , ψ

)
+ ς2j 4(mj,h

t )2fk(m
k,1
t , ψ) + k1b

2
ef

4
k

(
mk,1
t , ψ

)
+ 4k1ςjm

j,h
t f 2

k

(
mk,1
t , ψ

)
dψ

=ς2j 4(mj,h
t )2

∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)dψ

+ 4k1ςjm
j,h
t

∫ mk,1t

mk,0t

f 2
k

(
mk,1
t , ψ

)
dψ

+
(
k21 + 2b2eςjm

j,h
t

)∫ mk,1t

mk,0t

f 3
k

(
mk,1
t , ψ

)
dψ

+ k1b
2
e

∫ mk,1t

mk,0t

f 4
k

(
mk,1
t , ψ

)
dψ

+
1

4
b4e

∫ mk,1t

mk,0t

f 5
k

(
mk,1
t , ψ

)
dψ

Again, we simply note that we will need to sum the three integrals to-
gether, but no particular insight is gained by writing it out.

A.3 The implementation in GiNaC

The actual calculation of the integrals has been done in a computer algebra
system. For the reduced model, we have the following source code, written
in C++:

//Here we d e f i n e a few u s e f u l shorthand f u n c t i o n s and r e s u l t s .

ex fk (ex var1 , ex var2 )
{

return vsigmak ∗ 2 ∗( var1 − var2 ) ;
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}

ex f j (ex var1 , ex var2 )
{

return vsigmaj ∗ 2 ∗( var1 − var2 ) ;
}

ex q1 (ex point )
{

return k1 + pow ( be , 2 ) ∗ fk (mk1 , po int ) ;
}

// This i s the marginal househo ld wi th medium c r e d i t avers ion ,
// e v a l u a t e d in a p o i n t between mk1 and mk0 .

ex mjm(ex point )
{

ex i =
(

k1 ∗ fk (mk1 , po int )
+ ( pow( be , 2 ) / 2 ) ∗ pow( fk (mk1 , po int ) , 2)
+ vsigmaj ∗ 2 ∗ mjh

) / ( vs igmaj ∗ 2 ) ;

return i ;
}

// These are the p r o b a b i l i t i e s f o r the t h r e e t y p e s o f househo lds
// o f o b t a i n i n g a j o b :

ex ph(ex phi , ex p s i )
{

return n + pow ( ae , 2 ) ∗ f j (mjh , phi ) ;
}

ex pm(ex phi , ex p s i )
{

return n + pow ( ae , 2 ) ∗ f j (mjm( p s i ) , phi ) ;
}
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//The b u i l d i n g b l o c k s f o r e v a l u a t i n g the i n t e g r a l s .
//The f i n a l number at the end o f the f u n c t i o n name
// denotes the power to which f j / f k i s r a i s e d .

ex i n t f j h 1 (ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a = mjh ∗ point − pow( point , 2 ) / 2 ;

ex i = vsigmaj ∗ 2 ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f j h 2 (ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a = pow(mjh , 2 ) ∗ point

− mjh ∗ pow( point , 2 ) + pow( point , 3 ) / 3 ;

ex i = pow( vsigmaj , 2 ) ∗ 4 ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t 1 (ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a = point ;

ex i = a . subs ( po int==high ) − a . subs ( po int==low ) ;
return i ;

}

ex i n t f k 1 (ex var , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
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ex a = var ∗ point − pow( point , 2 ) / ( 2 ) ;

ex i = vsigmak ∗ 2 ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f k 2 (ex var , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a =

pow( var , 2 ) ∗ point
− 2∗ pow( var , 1 ) ∗ pow( point , 2 ) / ( 2 )
+ pow( point , 3 ) / ( 3 ) ;

ex i = pow( vsigmak ∗ 2 ,2) ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f k 3 (ex var , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a =

pow( var , 3 ) ∗ point
− 3∗ pow( var , 2 ) ∗ pow( point , 2 ) / ( 2 )
+ 3∗ pow( var , 1 ) ∗ pow( point , 3 ) / ( 3 )
− pow( point , 4 ) / ( 4 ) ;

ex i = pow( vsigmak ∗ 2 ,3) ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f k 4 (ex var , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
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ex a =
pow( var , 4 ) ∗ point

− 4∗ pow( var , 3 ) ∗ pow( point , 2 ) / ( 2 )
+ 6∗ pow( var , 2 ) ∗ pow( point , 3 ) / ( 3 )
− 4∗ pow( var , 1 ) ∗ pow( point , 4 ) / ( 4 )
+ pow( point , 5 ) / ( 5 ) ;

ex i = pow( vsigmak ∗ ( 2 ) , 4 ) ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f k 5 (ex var , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a =

pow( var , 5 ) ∗ point
− 5 ∗pow( var , 4 ) ∗ pow( point , 2 ) / ( 2 )
+ 10∗pow( var , 3 ) ∗ pow( point , 3 ) / ( 3 )
− 10∗pow( var , 2 ) ∗ pow( point , 4 ) / ( 4 )
+ 5 ∗pow( var , 1 ) ∗ pow( point , 5 ) / ( 5 )
− pow( point , 6 ) / ( 6 ) ;

ex i = pow( vsigmak ∗ 2 ,5) ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f k 8 (ex var , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a =

pow( var , 8 ) ∗ point
− 8 ∗pow( var , 7 ) ∗ pow( point , 2 ) / ( 2 )
+ 28∗pow( var , 6 ) ∗ pow( point , 3 ) / ( 3 )
− 56∗pow( var , 5 ) ∗ pow( point , 4 ) / ( 4 )
+ 70∗pow( var , 4 ) ∗ pow( point , 5 ) / ( 5 )
− 56∗pow( var , 3 ) ∗ pow( point , 6 ) / ( 6 )
+ 28∗pow( var , 2 ) ∗ pow( point , 7 ) / ( 7 )
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− 8 ∗pow( var , 1 ) ∗ pow( point , 8 ) / ( 8 )
+ pow( point , 9 ) / ( 9 ) ;

ex i = pow( vsigmak ∗ 2 ,8) ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f kx 1 (ex var1 , ex var2 , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a =

pow( var1 , 1 ) ∗ pow( var2 , 1 ) ∗ point
− pow( var1 , 1 ) ∗ pow( point , 2 ) / ( 2 )
− pow( var2 , 1 ) ∗ pow( point , 2 ) / ( 2 )
+ pow( point , 3 ) / ( 3 ) ;

ex i = pow( vsigmak ∗ 2 ,2) ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}

ex i n t f kx 2 (ex var1 , ex var2 , ex low , ex high )
{

possymbol point ( ” po int ” ) ;
ex a =

pow( var1 , 2 ) ∗ pow( var2 , 1 ) ∗ point
− 2∗ pow( var1 , 2 ) ∗ pow( point , 2 ) / ( 2 )
− 2∗ pow( var1 , 1 ) ∗ pow( var2 , 1 ) ∗ pow( point , 2 ) / ( 2 )
+ 2∗ pow( var1 , 1 ) ∗ pow( point , 3 ) / ( 3 )
+ pow( var2 , 1 ) ∗ pow( point , 3 ) / ( 3 )
− pow( point , 4 ) / ( 4 ) ;

ex i = pow( vsigmak ∗ 2 ,3) ∗ (
a . subs ( po int==high ) − a . subs ( po int==low )
) ;

return i ;
}
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ex intmjm ( )
{

ex a = k1 ;
ex b = pow( be , 2 ) / 2 ;
ex c = f j (mjh , 0 ) ;

ex i =
a ∗ i n t f k 1 (mk1 , 0 ,mk1)

+ b ∗ i n t f k 2 (mk1 , 0 ,mk1)
+ c ∗ i n t 1 (0 ,mk1 ) ;

return i ;
}

ex intmjm2 ( )
{

ex a = k1 ;
ex b = pow( be , 2 ) / 2 ;
ex c = f j (mjh , 0 ) ;

ex i =
pow(a , 2 ) ∗ i n t f k 2 (mk1 , 0 ,mk1)

+ pow(b , 2 ) ∗ i n t f k 4 (mk1 , 0 ,mk1)
+ pow( c , 2 ) ∗ i n t 1 (0 ,mk1)
+ 2 ∗ a ∗ b ∗ i n t f k 3 (mk1 , 0 ,mk1)
+ 2 ∗ a ∗ c ∗ i n t f k 1 (mk1 , 0 ,mk1)
+ 2 ∗ b ∗ c ∗ i n t f k 2 (mk1 , 0 ,mk1 ) ;

return i ;
}

ex intmjm3 ( )
{

ex a = k1 ;
ex b = pow( be , 2 ) / 2 ;
ex c = f j (mjh , 0 ) ;
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ex i =
pow(a , 3 ) ∗ i n t f k 3 (mk1 , 0 ,mk1)

+ pow(b , 3 ) ∗ i n t f k 8 (mk1 , 0 ,mk1)
+ pow( c , 3 ) ∗ i n t 1 (0 ,mk1)
+ 3 ∗ pow(a , 2 ) ∗ b ∗ i n t f k 4 (mk1 , 0 ,mk1)
+ 3 ∗ pow(a , 2 ) ∗ c ∗ i n t f k 2 (mk1 , 0 ,mk1)
+ 3 ∗ a ∗ pow(b , 2 ) ∗ i n t f k 5 (mk1 , 0 ,mk1)
+ 3 ∗ a ∗ pow( c , 2 ) ∗ i n t f k 1 (mk1 , 0 ,mk1)
+ 6 ∗ a ∗ b ∗ c ∗ i n t f k 3 (mk1 , 0 ,mk1)
+ 3 ∗ pow(b , 2 ) ∗ c ∗ i n t f k 4 (mk1 , 0 ,mk1)
+ 3 ∗ b ∗ pow( c , 2 ) ∗ i n t f k 2 (mk1 , 0 ,mk1 ) ;

return i ;
}

ex intfk1mjm ( )
{

ex a = k1 ;
ex b = pow( be , 2 ) / 2 ;
ex c = f j (mjh , 0 ) ;

ex i =
c ∗ i n t f k 1 (mk1 , 0 ,mk1)

+ a ∗ i n t f k 2 (mk1 , 0 ,mk1)
+ b ∗ i n t f k 3 (mk1 , 0 ,mk1 ) ;

return i ;
}

ex intfk1mjm2 ( )
{

ex a = k1 ;
ex b = pow( be , 2 ) / 2 ;
ex c = f j (mjh , 0 ) ;

ex i =
pow( c , 2 ) ∗ i n t f k 1 (mk1 , 0 ,mk1)

+ pow(a , 2 ) ∗ i n t f k 3 (mk1 , 0 ,mk1)
+ pow(b , 2 ) ∗ i n t f k 5 (mk1 , 0 ,mk1)
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+ 2 ∗ a ∗ b ∗ i n t f k 4 (mk1 , 0 ,mk1)
+ 2 ∗ a ∗ c ∗ i n t f k 2 (mk1 , 0 ,mk1)
+ 2 ∗ b ∗ c ∗ i n t f k 3 (mk1 , 0 ,mk1 ) ;

return i ;
}

//So having now w r i t t e n out a l l the i n t e g r a l s ,
// we can o b t a i n the employment l e v e l s :

l s t employment ( )
{

ex intph = ( 1 − mk1 )
∗ ( n ∗ mjh + vsigmaj ∗ pow( ae , 2 ) ∗ pow(mjh , 2 ) ) ;

ex intpm =
(

n/(2 ∗ vsigmaj ) ∗ intmjm ( )
+ pow( ae , 2 ) / ( 4 ∗ vsigmaj ) ∗ intmjm2 ( )

) ;

ex intq1pm =
(

k1 ∗ intpm
+ (pow( be , 2 )∗ n )/(2 ∗ vsigmaj ) ∗ intfk1mjm ( )
+ (pow( be , 2 )∗pow( ae , 2 ) ) / ( 4 ∗ vsigmaj )

∗ intfk1mjm2 ( )
) ;

ex H1v = intq1pm ;
ex H0v = intpm + intph − H1v ;
return l s t (H1v , H0v ) ;

}



Appendix B

Integrating the utility function

B.1 The components of the utility function

The utility function for the family in the full model is given by a sum of
integrals:

U =

∫ mj,lt

0

∫ mk,0t

0

ULdψdφ+

∫ mj,mt

0

∫ mk,1t

mk,0t

UMdψdφ+

∫ mj,ht

0

∫ 1

mk,1t

UHdψdφ

+

∫ 1

mj,lt

∫ mk,0t

0

UAndψdφ+

∫ 1

mj,mt

∫ mk,1t

mk,0t

log ct(0, 0)dψdφ+

∫ 1

mj,ht

∫ 1

mk,1t

log ct(0, 0)dψdφ

=

∫ mj,lt

0

∫ mk,0t

0

ηfj(m
j,l
t , φ) +

1

2
a2ef

2
j (mj,l

t , φ)dψdφ

+

∫ mj,mt

0

∫ mk,1t

mk,0t

ηfj(m
j,m
t , φ) +

1

2
a2ef

2
j (mj,m

t , φ)dψdφ

+

∫ mj,ht

0

∫ 1

mk,1t

ηfj(m
j,h
t , φ) +

1

2
a2ef

2
j (mj,h

t , φ)dψdφ

+

∫ 1

0

∫ mk,0t

0

k0fk(m
k,0
t , ψ) +

1

2
b2ef

2
k (mk,0

t , ψ)dψdφ

+

∫ 1

0

∫ 1

0

log ct(0, 0)dψdφ

Where the equality comes from noticing a few common parts in each of the
ex-ante utility components.

This means we have five integrals to evaluate, of which the last one is
trivial:

∫ 1

0

∫ 1

0
log ct(0, 0)dψdφ = log ct(0, 0)
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B.1.1 Integrating the high credit aversion households

The integral under consideration here is almost identical to the integral in
[Christiano et al., 2010]. In this case it is simply a matter of expanding the
product, and term by term integration.

We obtain:

∫ mj,ht

0

∫ 1

mk,1t

ηfj(m
j,h
t , φ) +

1

2
a2ef

2
j (mj,h

t , φ)dψdφ

=

∫ 1

mk,1t

ηςjσj(m
j,h
t )1+σj +

1

2
a2eς

2
j

(
σ2
j (1 + σj)(m

j,h
t )1+2σj

1 + 2σj

)
dψ

=(1−mk,1
t )

(
ηςjσj(m

j,h
t )1+σj +

1

2
a2eς

2
j

(
σ2
j (1 + σj)(m

j,h
t )1+2σj

1 + 2σj

))

B.1.2 Integrating the credit market integral

The penultimate term in the utility function is the only one directly to contain
ψ, but we note that the structure is analogous to the integral considered
above, so we get:

∫ 1

0

∫ mk,0t

0

k0fk(m
k,0
t , ψ) +

1

2
b2ef

2
k (mk,0

t , ψ)dψdφ

=

∫ 1

0

k0ςkσk(m
k,0
t )1+σk +

1

2
b2eς

2
k

(
σ2
k(1 + σk)(m

k,0
t )1+2σk

1 + 2σk

)
dφ

=k0ςkσk(m
k,0
t )1+σk +

1

2
b2eς

2
k

(
σ2
k(1 + σk)(m

k,0
t )1+2σk

1 + 2σk

)

B.1.3 Integrating the medium credit aversion house-
holds

For households with medium credit aversion, we have to deal with the follow-

ing integral:
∫ mj,mt
0

∫ mk,1t
mk,0t

ηfj(m
j,m
t , φ) + 1

2
a2ef

2
j (mj,m

t , φ)dψdφ. Note that mj,m
t

is a function of ψ.
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Thus, we integrate with respect to φ first:

∫ mj,mt

0

∫ mk,1t

mk,0t

ηfj(m
j,m
t , φ) +

1

2
a2ef

2
j (mj,m

t , φ)dψdφ

=

∫ mk,1t

mk,0t

ηςjσj(m
j,m
t )1+σj +

1

2
a2eς

2
j

(
σ2
j (1 + σj)(m

j,m
t )1+2σj

1 + 2σj

)
dψ

≈(mk,1
t −m

k,0
t )
(ηςjσj

2

(
(mj,m

t )
1+σj

|mk,1t
+ (mj,m

t )
1+σj

|mk,0t

))
+ (mk,1

t −m
k,0
t )

(
1

4
a2eς

2
j

σ2
j (1 + σj)

1 + 2σj

(
(mj,m

t )
1+2σj

|mk,1t
+ (mj,m

t )
1+2σj

|mk,0t

))

Where the last step is a rough numerical integration.

But if σj = 1, we can write out an explicit expression:

∫ mj,mt

0

∫ mk,1t

mk,0t

ηfj(m
j,m
t , φ) +

1

2
a2ef

2
j (mj,m

t , φ)dψdφ

=

∫ mk,1t

mk,0t

ηςj(m
j,m
t )2 +

a2eς
2
j

3
(mj,m

t )3dψ

=
η

4ςj

∫ mk,1t

mk,0t

4ς2j (mj,m
t )2dψ +

a2e
24ςj

∫ mk,1t

mk,0t

8ς3j (mj,m
t )3dψ

The first integral has been dealt with in the previous section. The second
integral is expanded below:
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∫ mk,1t

mk,0t

8ς3j (mj,m
t )3dψ

=k31

∫ mk,1t

mk,0t

f 3
k (mk,1

t , ψ)dψ

+ 3k21
1

2
b2e

∫ mk,1t

mk,0t

f 4
k (mk,1

t , ψ)dψ

+ 3k212ςjm
j,h
t

∫ mk,1t

mk,0t

f 2
k (mk,1

t , ψ)dψ

+ 3k1
1

4
b4e

∫ mk,1t

mk,0t

f 5
k (mk,1

t , ψ)dψ

+ 6k1
1

2
b2e4ςj(m

j,h
t )2

∫ mk,1t

mk,0t

f 3
k (mk,1

t , ψ)dψ

+ 3k14ς
2
j (mj,h

t )2
∫ mk,1t

mk,0t

fk(m
k,1
t , ψ)dψ

+
1

8
b8e

∫ mk,1t

mk,0t

f 8
k (mk,1

t , ψ)dψ

+ 3
1

4
b4e2ςjm

j,h
t

∫ mk,1t

mk,0t

f 4
k (mk,1

t , ψ)dψ

+ 3
1

2
b2e4ς

2
j (mj,h

t )2
∫ mk,1t

mk,0t

f 2
k (mk,1

t , ψ)dψ

+ 8ς3j (mj,h
t )3

∫ mk,1t

mk,0t

1dψ

B.1.4 Integrating the low credit aversion households

For households with medium credit aversion, we have to deal with the fol-

lowing integral:
∫ mj,lt
0

∫ mk,0t
0

ηfj(m
j,l
t , φ) + 1

2
a2ef

2
j (mj,l

t , φ)dψdφ. Note that mj,l
t

is a function of ψ.
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Thus, we integrate with respect to φ first:∫ mj,lt

0

∫ mk,0t

0

ηfj(m
j,l
t , φ) +

1

2
a2ef

2
j (mj,l

t , φ)dψdφ

=

∫ mk,0t

0

ηςjσj(m
j,l
t )1+σj +

1

2
a2eς

2
j

(
σ2
j (1 + σj)(m

j,l
t )1+2σj

1 + 2σj

)
dψ

≈(mk,0
t )

ηςjσj
2

(
(mj,l

t )
1+σj
|0 + (mj,l

t )
1+σj

|mk,0t

)
+ (mk,0

t )
a2eς

2
j

4

σ2
j (1 + σj)

1 + 2σj

(
(mj,l

t )
1+2σj
|0 + (mj,l

t )
1+2σj

|mk,0t

)
Where the last step is a rough numerical integration.

But if σj = 1, we can write out an explicit expression:∫ mj,lt

0

∫ mk,0t

0

ηfj(m
j,l
t , φ) +

1

2
a2ef

2
j (mj,l

t , φ)dψdφ

=

∫ mk,0t

0

ηςj(m
j,l
t )2 +

a2eς
2
j

3
(mj,l

t )3dψ

=
η

4ςj

∫ mk,0t

0

4ς2j (mj,l
t )2dψ +

a2e
24ςj

∫ mk,0t

0

8ς3j (mj,l
t )3dψ

Similarly to above, we expand the second integral:∫ mk,0t

0

8ς3j (mj,l
t )3dψ

=z3
∫ mk,0t

0

1dψ + 3z2k1

∫ mk,0t

0

fk(m
k,1
t , ψ)dψ

− 3z2k0

∫ mk,0t

0

fk(m
k,0
t , ψ)dψ + 3zk21

∫ mk,0t

0

f 2
k (mk,1

t , ψ)dψ

− 6zk1k0

∫ mk,0t

0

fk(m
k,1
t , ψ)fk(m

k,0
t , ψ)dψ + 3zk20

∫ mk,0t

0

f 2
k (mk,0

t , ψ)dψ

+ k31

∫ mk,0t

0

f 3
k (mk,1

t , ψ)dψ − 3k21k0

∫ mk,0t

0

f 2
k (mk,1

t , ψ)fk(m
k,0
t , ψ)dψ

+ 3k1k
2
0

∫ mk,0t

0

fk(m
k,1
t , ψ)f 2

k (mk,0
t , ψ)dψ − k30

∫ mk,0t

0

f 3
k (mk,0

t , ψ)dψ

where z = 1
2
b2ef

2
k (mk,1

t ,mk,0
t ) + 2ςjm

j,h
t
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B.2 Bringing it all together

For general σj we get:

U ≈mk,0
t

(
ηςjσj

2

(
(mj,l

t )
1+σj
|0

)
+

1

4
a2eς

2
j

σ2
j (1 + σj)

1 + 2σj

(
(mj,l

t )
1+2σj
|0

))
−mk,0

t

(
ηςjσj

2

(
(mj,h

t )1+σj
)

+
1

4
a2eς

2
j

σ2
j (1 + σj)

1 + 2σj

(
(mj,h

t )1+2σj
))

+mk,1
t

(ηςjσj
2

(
(mj,h

t )1+σj + (mj,m
t )

1+σj

|mk,0t

))
+mk,1

t

(
1

4
a2eς

2
j

σ2
j (1 + σj)

1 + 2σj

(
(mj,h

t )1+2σj + (mj,m
t )

1+2σj

|mk,0t

))
+ k0ςkσk(m

k,0
t )1+σk +

1

2
b2eς

2
k

(
σ2
k(1 + σk)(m

k,0
t )1+2σk

1 + 2σk

)

+ (1−mk,1
t )

(
ηςjσj(m

j,h
t )1+σj +

1

2
a2eς

2
j

(
σ2
j (1 + σj)(m

j,h
t )1+2σj

1 + 2σj

))
+ log ct(0, 0)

Additionally, if σj = σk = 1, and we set mk,0
t = 0, which is the setup in

the reduced model, the utility function simplifies in structure to:

U =

∫ mj,mt

0

∫ mk,1t

0

UMdψdφ+

∫ mj,ht

0

∫ 1

mk,1t

UHdψdφ

+

∫ 1

mj,mt

∫ mk,1t

0

log ct(0, 0)dψdφ+

∫ 1

mj,ht

∫ 1

mk,1t

log ct(0, 0)dψdφ

In this case it is in fact possible to write out the utility as a polynomial
in mk,1

t :
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U = log ct(0, 0) + ηςj(m
j,h
t )2 +

1

3
a2eς

2
j (mj,h

t )3

+ k1ςk

(
ηmj,h

t +
a2eςj

2
(mj,h

t )2
)

(mk,1
t )2

+
1

3

(
k21ς

2
k

(
η

ςj
+ a2em

j,h
t

)
+ b2eς

2
k

(
ηmj,h

t +
a2eςj

2
(mj,h

t )2
))

(mk,1
t )3

+
1

12

(
6k1b

2
eς

3
k

(
η

ςj
+ a2em

j,h
t

)
+
a2eς

3
kk

3
1

ςj

)
(mk,1

t )4

+
1

5

(
b4eς

4
k

(
η

ςj
+ a2em

j,h
t

)
+
a2eς

4
kk

2
1b

2
e

ςj

)
(mk,1

t )5

+
1

6

a2eς
5
kk1b

4
e

ςj
(mk,1

t )6

+
4

27

a2eς
8
kb

6
e

ςj
(mk,1

t )9

B.3 Implementation in GiNaC

As previously, we use GiNaC to actually do the calculation, and store it for
later use. The relevant section of the source code for the reduced model is:

ex u t i l i t y ( )
{

ex U t i l i t y =
+ (1 − mk1) ∗ n ∗ vsigmaj ∗ (

pow(mjh , 2)
)
+ (1 − mk1) ∗ pow( ae , 2 ) ∗ pow( vsigmaj , 2 ) / 3 ∗ (

pow(mjh , 3)
) // the 1/2 c a n c e l s out wi th (1+ sigmaj )=2.
+ n/(4 ∗ vsigmaj ) ∗ intmjm2 ( )
+ pow( ae , 2 ) / ( 2 4 ∗ vsigmaj ) ∗ intmjm3 ( )
+ l c ;

return U t i l i t y ;
}
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Appendix C

The entries of Jf

The matrix Jf in the reduced model represents the changes in employment
levels as the marginals change. As mentioned in the text, the entries of the
matrix are quite long, so they are reproduced on the next two pages in full
generality. Due to the size of the entries, the pages are rendered in landscape
to avoid having to cut up too many fractions.
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Appendix D

The source code

The complete source code for GiNaC is provided below. Annotations are
provided inline.

#include <iostream>
#include <g inac / g inac . h>
using namespace std ;
using namespace GiNaC ;

// Globa l v a r i a b l e s
possymbol p s i ( ” p s i ” ) , phi ( ” phi ” ) ;
possymbol mk1( ”mk1” , ” ( m tˆ{k , 1} ) ” ) ;
possymbol mjh( ”mjh” , ” ( m tˆ{ j , h}) ” ) ;
realsymbol l c ( ” l c ” , ”\\ l og c t (0 , 0 ) ” ) ;
possymbol vsigmak ( ”vsigmak” , ”\\ vars igma k ” ) ;
possymbol vsigmaj ( ” vsigmaj ” , ”\\ var s i gma j ” ) ;
possymbol n( ”n” , ”\\ eta ” ) , ae ( ”ae” , ” a e ” ) , be ( ”be” , ” b e ” ) ;
realsymbol k1 ( ”k1” , ” k 1 ” ) ;
realsymbol Fj ( ”Fj” , ” F j ” ) ;
realsymbol Fk( ”Fk” , ”F k” ) ;

possymbol H1( ”H1” , ”{H t ˆ1}” ) , H0( ”H0” , ”{H t ˆ0}” ) ;
possymbol h1 ( ”h1” , ”{ h t ˆ1}” ) , h0 ( ”h0” , ”{ h t ˆ0}” ) ;
possymbol C1( ”C1” , ”{C t ˆ1}” ) , C0( ”C0” , ”{C t ˆ0}” ) ;

possymbol P( ”P” , ” P t ” ) ;
possymbol W1( ”W1” , ”{W tˆ1}” ) , W0( ”W0” , ”{W tˆ0}” ) ;

possymbol kaK( ”kaK” , ”\\kappa k” ) ;
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possymbol kaJ ( ”kaJ” , ”\\ kappa j ” ) ;
possymbol kaK1( ”kaK1” , ”\\kappa {k1}” ) ;
possymbol kaK0( ”kaK0” , ”\\kappa {k0}” ) ;
possymbol kaJ1 ( ”kaJ1” , ”\\kappa { j 1 }” ) ;
possymbol kaJ0 ( ”kaJ0” , ”\\kappa { j 0 }” ) ;

possymbol muK( ”muK” , ”\\mu k” ) ;
possymbol muJ( ”muJ” , ”\\mu j” ) ;
possymbol muK1( ”muK1” , ”\\mu {k1}” ) ;
possymbol muK0( ”muK0” , ”\\mu {k0}” ) ;
possymbol muJ1( ”muJ1” , ”\\mu { j 1 }” ) ;
possymbol muJ0( ”muJ0” , ”\\mu { j 0 }” ) ;

//SECTION OMITTED HERE, INCLUDED IN APPENDIX A

//Beware o f d i v i s i o n by zero i f H1v i s a c t u a l l y zero .
l s t consumption ( l s t Employment )
{

ex H1v = Employment [ 0 ] ;
ex H0v = Employment [ 1 ] ;

ex c11 = exp (
Fj + vsigmaj ∗ 2 ∗ mjh
+ l c + Fk + vsigmak ∗ 2 ∗ mk1

) ;
ex c10 = exp ( Fj + vsigmaj ∗ 2 ∗ mjh + l c ) ;
ex u0v = 1 − H1v − H0v ;

ex C1v = c11 ;

ex C0v = ( H0v / (H0v + u0v ) ) ∗ c10
+ ( u0v / (H0v + u0v ) ) ∗ exp ( l c ) ;

return l s t ( C1v , C0v ) ;
}

matrix matr H ( l s t Point , l s t Employment , l s t Testparams )
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{

// Note we can use both the l o g
//and the p l a i n employment l e v e l s be low .
// P o t e n t i a l l y u s e f u l .

ex H1t = Employment [ 0 ] . subs ( Testparams ) ;
ex H0t = Employment [ 1 ] . subs ( Testparams ) ;

matrix J ( 2 , 2 ) ;
J =

H1t . d i f f (mk1 ) . subs ( Point ) , H1t . d i f f (mjh ) . subs ( Point ) ,
H0t . d i f f (mk1 ) . subs ( Point ) , H0t . d i f f (mjh ) . subs ( Point ) ;

return J ;
}

matrix matr h ( l s t Point , l s t Employment , l s t Testparams )
{

ex h1t = log ( Employment [ 0 ] . subs ( Testparams ) ) ;
ex h0t = log ( Employment [ 1 ] . subs ( Testparams ) ) ;

matrix J ( 2 , 2 ) ;
J =

h1t . d i f f (mk1 ) . subs ( Point ) , h1t . d i f f (mjh ) . subs ( Point ) ,
h0t . d i f f (mk1 ) . subs ( Point ) , h0t . d i f f (mjh ) . subs ( Point ) ;

return J ;
}

//Based on the g e n e r a l i n v e r s e jacob ian ,
//we produce a t a y l o r−expansion in a
// s p e c i f i c p o i n t f o r the margina ls .
//We a l s o r e q u i r e the e x p r e s s i o n f o r the employments
// so t h a t we can e v a l u a t e in t h e s e .
//We a l s o produce the a s s o c i a t e d e x p r e s s i o n f o r l o g c t ( 0 , 0 ) .

l s t marginals H (matrix InvMatr H , l s t Point , l s t Employment )
{
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ex mk1v =
Point [ 0 ] . rhs ( )
+ InvMatr H [ 0 ]
∗ (H1 − Employment [ 0 ] . subs ( Point ) )

+ InvMatr H [ 1 ]
∗ (H0 − Employment [ 1 ] . subs ( Point ) ) ;

// Note the workaround to adress e n t r i e s in a matrix .
// This i s done in a s e r i a l f a s h i o n :
// −−−−−
// | 0 , 1 |
// | 2 , 3 |
// −−−−−

ex mjhv =
Point [ 1 ] . rhs ( )
+ InvMatr H [ 2 ]
∗ (H1 − Employment [ 0 ] . subs ( Point ) )

+ InvMatr H [ 3 ]
∗ (H0 − Employment [ 1 ] . subs ( Point ) ) ;

ex Lcfunc = log (C1) − Fk − Fj
− 2 ∗ vsigmak ∗ mk1v
− 2 ∗ vsigmaj ∗ mjhv ;

return l s t (
mk1 == mk1v ,
mjh == mjhv ,
l c == Lcfunc

) ;
}

l s t marg ina l s h (matrix InvMatr h , l s t Point , l s t Employment )
{

ex mk1v =
Point [ 0 ] . rhs ( )
+ InvMatr h [ 0 ]
∗ ( h1 − l og ( Employment [ 0 ] . subs ( Point ) ) )

+ InvMatr h [ 1 ]
∗ ( h0 − l og ( Employment [ 1 ] . subs ( Point ) ) ) ;

ex mjhv =
Point [ 1 ] . rhs ( )
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+ InvMatr h [ 2 ]
∗ ( h1 − l og ( Employment [ 0 ] . subs ( Point ) ) )

+ InvMatr h [ 3 ]
∗ ( h0 − l og ( Employment [ 1 ] . subs ( Point ) ) ) ;

ex Lcfunc = log (C1) − Fk − Fj
− 2 ∗ vsigmak ∗ mk1v
− 2 ∗ vsigmaj ∗ mjhv ;

return l s t (
mk1 == mk1v ,
mjh == mjhv ,
l c == Lcfunc

) ;
}

// r e q u i r e s margina ls e x r e s s e d as f u n c t i o n s o f ht1 , ht0
l s t H0opt ( )
{

ex H0opt = pow(
(
P ∗ C1 ∗ exp ( − Fk − 2 ∗ vsigmak ∗ muK )
∗ pow(H1 , −2 ∗ vsigmak ∗ muK1)
∗ pow(H0 , −2 ∗ vsigmak ∗ muK0)
∗ pow(W0,−1)
) /
(
W0 ∗ pow(H1 , 2 ∗ ( vsigmak ∗ muK1 + vsigmaj ∗ muJ1) )
)

, 1 + 2 ∗ ( vsigmak ∗ muK0 + vsigmaj ∗ muJ0 ) ) ;

return l s t ( H0 == H0opt ) ;
}

ex u t i l i t y ( )
{

ex U t i l i t y =



116 APPENDIX D. THE SOURCE CODE

+ (1 − mk1) ∗ n ∗ vsigmaj ∗ (
pow(mjh , 2)

)
+ (1 − mk1) ∗ pow( ae , 2 ) ∗ pow( vsigmaj , 2 ) / 3 ∗ (

pow(mjh , 3)
) // the 1/2 c a n c e l s out wi th (1+ sigmaj )=2.
+ n/(4 ∗ vsigmaj ) ∗ intmjm2 ( )
+ pow( ae , 2 ) / ( 2 4 ∗ vsigmaj ) ∗ intmjm3 ( )
+ l c ;

return U t i l i t y ;

}

ex u t i l i t y S ( )
{

ex U t i l i t y =
l c
+ n ∗ vsigmaj ∗ pow(mjh , 2 )
+ pow(3 ,−1) ∗ pow( ae ∗ vsigmaj , 2 ) ∗ pow(mjh , 3 )
+ pow(3 ,−1) ∗ pow(mk1 , 3 ) ∗
(
pow( k1 ∗ vsigmak , 2 ) ∗

(
n / vsigmaj + pow( ae , 2 ) ∗ mjh
)

+ pow( be ∗ vsigmak , 2 ) ∗
(
n ∗ mjh
+ 1/2 ∗ vsigmaj ∗ pow( ae ∗ mjh , 2 )
)

) ;

return U t i l i t y ;

}

// ////////////////////
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// Checking f u n c t i o n s //
// ////////////////////

int s an i ty check ( l s t Point , l s t Testparams )
{

cout << ”max q f o r j =1: ”
<< q1 ( 0 ) . subs ( Point ) . subs ( Testparams ) << endl ;

cout << ”max p f o r high : ”
<< ph (0 ,mk1 ) . subs ( Point ) . subs ( Testparams ) << endl ;

cout << ”max p f o r med : ”
<< pm( 0 , 0 ) . subs ( Point ) . subs ( Testparams ) << endl ;

cout << ” impl i ed mjm 0 : ”
<< mjm( 0 ) . subs ( Testparams ) . subs ( Point ) << endl << endl ;

return 0 ;
}

int employment check ( l s t Employment , l s t Point , l s t Testparams )
{

cout << ”H1 =”
<< Employment [ 0 ] . subs ( Point ) . subs ( Testparams ) << endl ;

cout << ”H0 =”
<< Employment [ 1 ] . subs ( Point ) . subs ( Testparams ) << endl<< endl ;

return 0 ;
}

int consumption check ( l s t Consumption , l s t Point , l s t Testparams )
{

cout << ”C1 =”
<< Consumption [ 0 ] . subs ( Point ) . subs ( Testparams ) << endl ;

cout << ”C0 =”
<< Consumption [ 1 ] . subs ( Point ) . subs ( Testparams ) << endl<< endl ;

return 0 ;
}

int marg ina l s check ( l s t Marginals , l s t Point2 , l s t Testparams )



118 APPENDIX D. THE SOURCE CODE

{

cout << ” This means that the marg ina l s
as a func t i on o f employment l e v e l s are : ” << endl ;

cout << ”m tˆ{k ,1} =& ”
<< Marginals [ 0 ] . rhs ( ) . subs ( Testparams ) << endl ;

cout << ”m tˆ{ j , h} =& ”
<< Marginals [ 1 ] . rhs ( ) . subs ( Testparams ) << endl ;

cout << ” log c t (0 , 0 ) =& ”
<< Marginals [ 2 ] . rhs ( ) . subs ( Testparams ) << endl ;

cout << ”And with Point2 i n s e r t e d : ” << endl ;
cout << ”m tˆ{k ,1} =& ”

<< Marginals [ 0 ] . rhs ( ) . subs ( Point2 )
. subs ( Testparams ) . e v a l f ( ) << endl ;

cout << ”m tˆ{ j , h} =& ”
<< Marginals [ 1 ] . rhs ( ) . subs ( Point2 )

. subs ( Testparams ) . e v a l f ( ) << endl ;
cout << ” log c t (0 , 0 ) =& ”

<< Marginals [ 2 ] . rhs ( ) . subs ( Point2 )
. subs ( Testparams ) . e v a l f ( ) << endl ;

return 0 ;
}

int main ( )
{

/∗ S p e c i f y output type ∗/
cout << d f l t ;

// cout << l a t e x ;
// cout << c s r c ;

/∗ C o n f i g u r a b l e ∗/
// The Point v a r i a b l e i s the p o i n t
// the Jacobian i s i n v e r t e d in to o b t a i n
// i n t e r n a l v a r i a b l e s as f u n c t i o n s
// o f the e x t e r n a l v a r i a b l e s .

l s t Point = l s t (
mk1 == 731∗pow(10 ,−3) ,
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mjh == 731∗pow(10 ,−3) ,
l c == 0

) ;

// The i m p l i e d e x t e r n a l v a r i a b l e s
// based on the chosen i n t e r n a l p o i n t .
l s t Point2 = l s t (

H1 == employment ( ) [ 0 ] . subs ( Point ) ,
H0 == employment ( ) [ 1 ] . subs ( Point ) ,
C1 == consumption ( employment ( ) ) [ 0 ] . subs ( Point )
) ;

// l s t Point2 = l s t ( ) ;

l s t Point3 = l s t (
H1 == 0 .20 ,
H0 == 0 .50 ,
C1 == 14000
) ;

// Note t h a t aeˆ2+n<1 f o r the model to make sense .

l s t Testparams = l s t (
ae == 0.265 ,
n == 0 .43 ,

Fj == 1 .39 ,
vs igmaj == 4 .64 ,

be == 0 . 2 ,
// k1 == 0.4 ,

Fk == 3 . 8 ,
vsigmak == 2

) ;

// l s t Testparams = l s t ( ) ;

// l s t Testparams = l s t ( sigmak == 1 ) ;
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// l s t Testparams = l s t ( vs igmaj == 1 , vsigmak == 1 , sigmak == 1 ) ;

/∗ Begin programme ∗/

s an i ty check ( Point , Testparams ) ;

l s t Employment = employment ( ) ;
employment check ( Employment , Point , Testparams ) ;

l s t Consumption = consumption ( employment ( ) ) ;
consumption check ( Consumption , Point , Testparams ) ;

matrix InvMatr H =
( matr H ( Point , Employment , Testparams ) ) . i n v e r s e ( ) ;

matrix InvMatr h =
( matr h ( Point , Employment , Testparams ) ) . i n v e r s e ( ) ;

l s t Marginals H = marginals H ( InvMatr H , Point , Employment ) ;
l s t Margina ls h = marg ina l s h ( InvMatr h , Point , Employment ) ;

marg ina l s check ( Marginals H , Point2 , Testparams ) ;

//The below loop g e n e r a t e s
// the t a b l e g i ven in the c a l i b r a t i o n chapter .
for ( int i = 5 ; i >= 0 ; i−−)
{

l s t Tp = l s t (
ae == 0.265 ,
n == 0 .43 ,

Fj == 1 .39 ,
vs igmaj == 4 .64 ,

be == 0 . 2 ,
k1 == 0.1 ∗ i ,
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Fk == 3 . 8 ,
vsigmak == 2

) ;

l s t Employment = employment ( ) ;

l s t Consumption = consumption ( employment ( ) ) ;
matrix InvMatr H = ( matr H ( Point , Employment , Tp ) ) . i n v e r s e ( ) ;
matrix InvMatr h = ( matr h ( Point , Employment , Tp ) ) . i n v e r s e ( ) ;

l s t Marginals H = marginals H ( InvMatr H , Point , Employment ) ;
l s t Margina ls h = marg ina l s h ( InvMatr h , Point , Employment ) ;

cout << i << endl ;
cout << Margina ls h [ 0 ] . subs (Tp) << endl ;
cout << Margina ls h [ 1 ] . subs (Tp) << endl ;

}

return 0 ;
}
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